Subspace topology

If (X, τ) is a topological space, and Y is a sub**set** of X, then Y is called a sub**space** when Y is equipped with the topology τ_Y consisting of all sets $U \cap Y$, where $U \in \tau$.

Warning: The words "open" and "closed" have different meanings in X and in Y.

Example

Suppose $X = \mathbb{R}$ with the Euclidean topology, and $Y = \mathbb{Q}$ with the subspace topology. Let A be $\{x \in \mathbb{Q} : 0 < x < 1\}$. The set A is "open in Y" (meaning $A \in \tau_Y$) but not "open in X" $(A \notin \tau)$. Relative to X, the interior of A is empty. Relative to Y, the interior of A is A. The closure of A in \mathbb{R} is [0, 1]. The closure relative to Y is $\{x \in \mathbb{Q} : 0 \le x \le 1\}$.

Consistency questions

 If Y is a subspace of X, and A is a *closed* subset of X, is A ∩ Y a relatively closed subset of Y? Yes. Assignment due next class

- 1. Write solutions to numbers 6 and 11 in Exercises 4.1.
- 2. Read section 4.2 in the textbook.