Reminder

The first exam, on Chapters 1–4, takes place on February 23 (a week from Friday).

Separation properties that a space might have

- T_0 : For every two distinct points, there is an open set that contains exactly one. [Exercise 1.3.5]
- T_1 : Points are closed. [Exercise 1.3.3]
- T₂: Every two distinct points can be separated by disjoint open sets. [Exercise 4.1.13]
 Such spaces are called *Hausdorff spaces* in honor of Felix Hausdorff (1868–1942).
- T_3 : In a *regular* space, every closed subset and every point outside the subset can be separated by disjoint open sets. T_1 + regular = T_3 . [Exercise 4.1.17]
- *T*₄: In a *normal* space, every two disjoint closed sets can be separated by disjoint open sets.

 T_1 + normal = T_4 . [Exercise 6.1.9]

► Write a solution to problem 13 in Exercises 4.1 (about Hausdorff spaces).

Hint for part (vi): If x and y are two distinct limit points, then consider disjoint open sets U and V such that $x \in U$ and $y \in V$. Examine the set $\{y\} \cup U \setminus \{x\}$. What happens if this set is open? What happens if this set is closed?