Continuity is a one-way street

Continuous function: the inverse image of every open set is open.
But the direct image of an open set is not necessarily open.

Example
Consider the continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. The open interval $(-1,1)$ in the domain has image $[0,1)$, which is not an open subset of \mathbb{R}.

Definition
A function is called open if the image of every open set is open.

Why did the chicken cross the road?

Theorem (Intermediate-value theorem from calculus)
If I is an interval, and $f: I \rightarrow \mathbb{R}$ is continuous, then $f(I)$ is an interval.
[Euclidean topology is assumed.]
Theorem (Generalization to topological spaces)
If $f: X_{1} \rightarrow X_{2}$ is continuous [where $\left(X_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$ are two topological spaces], and A is a connected subspace of X_{1}, then $f(A)$ is a connected subspace of X_{2}.

Path-connected spaces

A path joining a to b in a space X means a continuous function $f:[0,1] \rightarrow X$ such that $f(0)=a$ and $f(1)=b$.

A space is path-connected when each two points in the space can be joined by a path.
Example
\mathbb{R}^{2} is path-connected. Two arbitrary points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ can be joined by a straight-line path: namely,

$$
f(t)=\left((1-t) x_{1}+t x_{2},(1-t) y_{1}+t y_{2}\right) .
$$

Path-connected \Longrightarrow connected

... to be continued

Assignment due next class

- Read section 5.2 in the textbook.

