Continuity is a one-way street

Continuous function: the *inverse* image of every open set is open.

But the *direct* image of an open set is not necessarily open.

Example

Consider the continuous function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. The open interval (-1, 1) in the domain has image [0, 1), which is not an open subset of \mathbb{R} .

Definition

A function is called open if the image of every open set is open.

Why did the chicken cross the road?

Theorem (Intermediate-value theorem from calculus) If I is an interval, and $f: I \to \mathbb{R}$ is continuous, then f(I) is an interval.

[Euclidean topology is assumed.]

Theorem (Generalization to topological spaces)

If $f: X_1 \to X_2$ is continuous [where (X_1, τ_1) and (X_2, τ_2) are two topological spaces], and A is a connected subspace of X_1 , then f(A) is a connected subspace of X_2 .

Path-connected spaces

A *path* joining *a* to *b* in a space *X* means a continuous function $f: [0,1] \rightarrow X$ such that f(0) = a and f(1) = b.

A space is *path-connected* when each two points in the space can be joined by a path.

Example

 \mathbb{R}^2 is path-connected. Two arbitrary points (x_1, y_1) and (x_2, y_2) can be joined by a straight-line path: namely,

$$f(t) = ((1-t)x_1 + tx_2, (1-t)y_1 + ty_2).$$

$\mathsf{Path}\mathsf{-}\mathsf{connected} \implies \mathsf{connected}$

... to be continued

Assignment due next class

• Read section 5.2 in the textbook.