A *metric*, often denoted d (for "distance"), on a set X is a real-valued function satisfying the following properties.

1.
$$\forall x \in X, \forall y \in X,$$

(a) $d(x, y) = 0 \iff x = y$
(b) $d(x, y) \ge 0.$

- 2. Symmetry: $\forall x \in X$, $\forall y \in X$, d(x, y) = d(y, x).
- 3. Triangle inequality: $\forall x \in X, \forall y \in X, \forall z \in X, d(x, z) \le d(x, y) + d(y, z).$

Which of the following are examples of metric spaces?

1.
$$X = \mathbb{R}$$
, $d(x, y) = |x - y|$ yes
2. $X = \mathbb{Q}$, $d(x, y) = |x - y|$ yes (subspace)
3. $X = \mathbb{R}$, $d(x, y) = |x^3 - y^3|$ yes
4. $X = \mathbb{R}$, $d(x, y) = |x^2 - y^2|$ no, because $d(-1, 1) = 0$
5. $X = \mathbb{N}$, $d(n, m) = |n^2 - m^2|$ yes
6. $X = \mathbb{N}$, $d(n, m) = (n - m)^2$ no: $d(1, 3) > d(1, 2) + d(2, 3)$

Every metric space has a natural topology

In a metric space (X, d), an open ball with center c and radius r means $\{x \in X : d(x, c) < r\}$. Notation: $B_r(c)$.

The collection of open balls is a basis for a topology on X. Every open set is a union of open balls.

Every metric space is a topological space, but not every topological space is a metric space.

More examples of metric spaces

1. Let d(x, x) = 0, and d(x, y) = 1 when $x \neq y$. This metric corresponds to the discrete topology.

Assignment due next class

- 1. Read the first part of section 6.1, through Example 6.1.8.
- Prove that by using the symmetry property of a metric together with the triangle inequality, it is possible to deduce the property that d(x, y) ≥ 0 for all x and y. (In other words, the requirement that a metric be non-negative is a superfluous axiom.)