Recap

A metric on a set X is a real-valued function satisfying the following properties.

1. $\forall x \in X, \forall y \in X$,
(a) $d(x, y)=0 \Longleftrightarrow x=y$.
(b) $d(x, y) \geq 0$. [Can be deduced from the other properties.]
2. Symmetry: $\forall x \in X, \forall y \in X, d(x, y)=d(y, x)$.
3. Triangle inequality: $\forall x \in X, \forall y \in X, \forall z \in X$,

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

A metric provides a topology, for which a basis consists of all open "balls" $B_{r}(c):=\{x \in X: d(x, c)<r\}$.

Some more examples of metric spaces

1. [from last time] Let $d(x, x)=0$, and $d(x, y)=1$ when $x \neq y$. This metric corresponds to the discrete topology on the set X.
2. $X=\mathbb{R}^{2}, d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
(Euclidean metric).
3. $X=\mathbb{R}^{2}, d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$
(taxicab metric).
4. $X=$ the set of continuous real-valued functions defined on the interval $[0,1]$,
$d(f, g)=\left(\int_{0}^{1}(f(x)-g(x))^{2} d x\right)^{1 / 2}$.
5. $X=$ the set of 2×3 matrices with real entries, $d\left(M_{1}, M_{2}\right)=$ the rank of the matrix $\left(M_{1}-M_{2}\right)$ (the number of linearly independent rows).

Metric spaces are T_{2} (Hausdorff) spaces

For if x and y are any two distinct points, then the open balls centered at x and y of radius $\frac{d(x, y)}{3}$ are disjoint.

Discussion of Example 6.1.9: normed vector spaces

A norm on a vector space V (with either real or complex scalars) is a real-valued function $\|\cdot\|$ satisfying the following properties.

1. $\forall v \in V$,
(a) $\|v\|=0 \Longleftrightarrow v$ is the zero vector.
(b) $\|v\| \geq 0$. [Can be deduced from the other properties.]
2. Homogeneity: $\forall v \in V$ and for every scalar λ,

$$
\|\lambda v\|=|\lambda|\|v\| .
$$

3. Triangle inequality: $\forall v \in V, \forall w \in V$,

$$
\|v+w\| \leq\|v\|+\|w\|
$$

The model example: $V=\mathbb{R}^{2}$ or \mathbb{R}^{3}, and $\|v\|=$ the length of the vector v.

A norm induces a metric via $d(v, w)=\|v-w\|$.

Assignment due next class

1. Continue reading section 6.1, through Definition 6.1.22.
2. Write a solution to number 2 in Exercises 6.1.
