Reminders

- Classes do not meet on Friday, March 30.
- The second exam takes place on April 11 (Wednesday).

Example related to Exercise 6.1.3

A metric on the space of continuous functions $[0,1] \rightarrow \mathbb{R}$ is

$$
d(f, g)=\max \{|f(x)-g(x)|: 0 \leq x \leq 1\}
$$

What about a metric on the space of continuous functions $\mathbb{R} \rightarrow \mathbb{R}$?
One way to build such a metric is first to define

$$
d_{n}(f, g)=\max \{|f(x)-g(x)|:-n \leq x \leq n\}
$$

and then

$$
d(f, g)=\sum_{n=1}^{\infty} \frac{d_{n}(f, g)}{1+d_{n}(f, g)} \cdot \frac{1}{2^{n}}
$$

Isometries

What are the isometries of $(\mathbb{R}$, Euclidean metric)?
How about (\mathbb{R}^{2}, Euclidean metric)?
And $\left(\mathbb{R}^{2}\right.$, maximum metric)?

Assignment due next class

Read section 6.2 in the textbook.

