Reminder

- The second exam takes place on April 11 (next Wednesday).
- The material for the exam is mainly Chapter 5 and Sections 6.1 and 6.2.

A new generalization of the Euclidean topology on \mathbb{R}

Suppose X is a set equipped with a strict linear order relation " $<$ ": namely,

- if $x<y$ and $y<z$, then $x<z$ (transitivity),
- it never happens that $x<x$ (irreflexivity),
- for every two distinct points x and y, either $x<y$ or $y<x$ (but not both).

A subbasis for the order topology on X consists of sets of the form $\{x \in X: a<x\}$ and $\{x \in X: x<b\}$ for arbitrary points a and b in X. A basis consists of these sets together with sets of the form $\{x \in X: a<x<b\}$.

Examples of the order topology

1. If $X=\mathbb{R}$ and $<$ is the usual inequality relation, then the order topology agrees with the standard Euclidean topology.
2. If $X=(0,1) \cup\{3\}$, then the order topology on X is different from the subspace topology.

The subset $\{3\}$ equals $X \cap(2,4)$, so is open in the subspace topology.

In the order topology, a neighborhood of the point 3 has to contain some set $\{x \in X: a<x\}$ for which $a<1$: every neighborhood of 3 must intersect $(0,1)$. So $\{3\}$ is not an open set in the order topology on X.

Review exercise

Suppose $X=(0,1) \cup\{3\}$.

- For each of the following topologies, is the space X connected? If not, what are the components of X ?
- Same question for path-connected and path-components.

1. discrete topology
2. indiscrete topology
3. the subspace topology induced by (\mathbb{R}, Euclidean)
4. the subspace topology induced by (\mathbb{R}, Sorgenfrey)
5. the finite-closed topology
6. the order topology

Assignment due next class

Study for the upcoming exam.

