Exam results

- Scoring algorithm: (10 points per problem) +50 .
- Class statistics: mean 81, median 80, maximum 106; there were four scores ≥ 100.

Examples: finite versus infinite

- The interval $(0,1)$ is the union $\bigcup_{0<x<1}\left(\frac{x}{2}, \frac{1+x}{2}\right)$ of infinitely many open intervals, but is not the union of any finite subcollection of these intervals.
- The interval $[0,1]$ is the union $\bigcup_{0 \leq x \leq 1}\left[\frac{x}{2}, \frac{1+x}{2}\right]$ of infinitely many closed intervals, and is also the union of a finite subcollection of these intervals: namely, $\left[\frac{0}{2}, \frac{1+0}{2}\right] \cup\left[\frac{1}{2}, \frac{1+1}{2}\right]$.
- $\bigcap_{n=1}^{k}\left(0, \frac{1}{n}\right) \neq \varnothing$ for each natural number k, yet $\bigcap_{n=1}^{\infty}\left(0, \frac{1}{n}\right)=\varnothing$.
- $\bigcap_{n=1}^{k}\left[0, \frac{1}{n}\right] \neq \varnothing$ for each natural number k, and $\bigcap_{n=1}^{\infty}\left[0, \frac{1}{n}\right] \neq \varnothing$.

Compactness

Definitions

An open cover of a subset S of a topological space is a collection of open sets whose union contains S.

A subset S of a topological space is noncompact when there is some open cover of S (consisting of infinitely many open sets) with the property that no finite number of those sets is an open cover of S.

And S is compact if every open cover can be reduced to a finite subcover.

Examples in \mathbb{R} with the Euclidean topology

- $(0,1)$ is noncompact by the first example above.
- $[0, \infty)$ is noncompact, because (for instance) the sets $(-1, n)$ cover $[0, \infty)$, but no finite subcollection of these open sets forms a cover.
- $[0,1]$ is compact. (Not obvious; needs proof.)

Exercise

For which of the following topological spaces is the set of even natural numbers a compact subset?

1. (\mathbb{N}, discrete)
2. (\mathbb{N}, indiscrete)
3. (\mathbb{N}, initial segment)
4. (\mathbb{N}, final segment)
5. (\mathbb{N}, finite-closed)
