Compactness in metric spaces

Theorem (Part of Exercise 7.2.22)

A metric space is compact if and only if the space is sequentially compact, that is, every sequence has a convergent subsequence.

Restatement for subsets:

Theorem

A subset E of a metric space is compact if and only if every sequence of points of E has a subsequence that converges to a point of E.

The proof requires several steps.

A compact metric space is sequentially compact

Proof.

Seeking a contradiction, suppose there is a sequence that has no convergent subsequence.

Then for each point x in the space, there must be some radius r(x) such that the ball $B_{r(x)}(x)$ contains only a finite number of terms of the sequence.

But the space is compact by hypothesis, so a finite number of these balls cover the space, hence contain all infinitely many terms of the sequence. Contradiction.

A general fact about compactness

Lemma

To check compactness in a topological space, it suffices to consider open covers made up of basis elements.

Proof.

Remark. Exercise $7.1.7^*$ is the much harder statement that it suffices to consider subbasis covers.

Sequentially compact metrics spaces are separable

Proof.

Sequentially compact metric spaces are second countable

Proof.

Assignment due next class

For review (not to hand in):

- 1. Which of the following properties does \mathbb{R} have when considered with the Euclidean topology?
 - (a) closed
 - (b) connected
 - (c) compact
 - (d) Hausdorff
 - (e) separable
 - (f) second-countable
- 2. Same question for \mathbb{R} with the finite-closed (cofinite) topology.