1 Every sequentially compact metric space is separable

(a) Fix a natural number *n*.

Pick an arbitrary point x_1 , then (if possible) a point x_2 outside $B_{1/n}(x_1)$, then (if possible) a point x_3 outside $B_{1/n}(x_1) \cup B_{1/n}(x_2)$, and so on.

Why does sequential compactness force this construction to stop after finitely many steps?

- (b) The collection of all the points in part (a) for all *n* is a countable set.
- (c) This countable set is dense.

2 Every sequentially compact metric space is second countable

- (a) Assume that the space is separable.(Another group is showing that every sequentially compact metric space is separable.)
- (b) Take a countable dense set, and for each point x of that set, collect all the balls $B_{1/n}(x)$ as *n* runs over the natural numbers.
- (c) Why is this collection of balls a countable collection?
- (d) Why is this collection of balls a basis for the metric topology?

3 Every sequentially compact metric space is compact

- (a) Another group is showing that sequentially compact metric spaces are second countable. So it suffices to show that every countable open cover, say $\{B_n\}_{n=1}^{\infty}$, has a finite subcover.
- (b) If there is no finite subcover, then it is possible for each *n* to choose a point x_n outside $B_1 \cup \cdots \cup B_n$.
- (c) Sequential compactness implies that this sequence of points has a subsequence converging to some limit, say *x*.
- (d) There is some natural number *j* for which $x \in B_j$.
- (e) Since B_j is open, some tail of the convergent subsequence lies inside B_j .
- (f) By construction, $x_k \notin B_j$ when $k \ge j$. Contradiction.

4 Compactness and the finite-intersection property

Here is the statement of problem 7.2.3:

Let (X, τ) be a compact space. If $\{F_i : i \in I\}$ is a family of closed subsets of X such that $\bigcap_{i \in I} F_i = \emptyset$, prove that there is a finite subfamily

 $F_{i_1}, F_{i_2}, \dots, F_{i_m}$ such that $F_{i_1} \cap F_{i_2} \cap \dots \cap F_{i_m} = \emptyset$.

- (a) The implication about closed sets in this statement is the contrapositive of a property stated (but not proved) in class to be equivalent to compactness.
- (b) Apply De Morgan's law for set complements to show that the indicated property of closed sets is equivalent to compactness.

5 Automatic continuity of the inverse function

Here is the statement of problem 7.2.6, an important theorem:

Let $f : (X, \tau) \to (Y, \tau_1)$ be a continuous bijection. If (X, τ) is compact and (Y, τ_1) is Hausdorff, prove that f is a homeomorphism.

- (a) Proposition 7.2.1 implies that the space *Y* is compact.
- (b) The space X is necessarily Hausdorff: to separate points x_1 and x_2 , find open sets that separate $f(x_1)$ and $f(x_2)$ and pull these sets back by f^{-1} .
- (c) So both X and Y are compact Hausdorff spaces.

Propositions 7.2.4 and 7.2.5 imply that a subset of a compact Hausdorff space is compact if and only if closed.

- (d) To solve the problem, what needs to be shown is that f^{-1} is continuous.
- (e) Equivalently, what needs to be shown is that f is a closed mapping: namely, for every closed subset A of X, the image f(A) is a closed subset of Y.
- (f) In view of part (c), what needs to be shown is that f maps compact sets to compact sets. And this conclusion follows from Proposition 7.2.1.

6 Every compact Hausdorff space is normal

This statement is problem 7.2.10. The definition of "normal" (or T_4) can be found in problem 6.1.9. The meaning is that if A and B are two arbitrary disjoint closed sets, then there exist disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

- (a) Suppose $a \in A$ and $b \in B$. The Hausdorff condition produces disjoint open neighborhoods N_a and N_b such that $a \in N_a$ and $b \in N_b$.
- (b) Keeping a fixed, let b vary over the set B. The neighborhoods N_b form an open cover of B.
- (c) The set B is compact (Proposition 7.2.4), so there is a finite subcover.
- (d) Take the corresponding finite number of neighborhoods of *a* and intersect them to get an open neighborhood of *a* that is disjoint from an open set containing *B*.
- (e) Now let the point *a* vary. A finite number of the constructed neighborhoods cover the compact set *A*.
- (f) The union of the sets constructed in part (e) can be taken to be U. What is the required open set V?