Exam 1
Principles of Analysis I

Instructions Please write your solutions on your own paper. Explain your reasoning in complete sentences. Students in section 500 may substitute problems from part C for problems in part A if they wish.

A Section 500: Do both of these problems.

A. 1

In the Euclidean plane \mathbb{R}^{2}, the set of points inside a circle is a disk. Prove that every set of non-overlapping disks in the plane is at most countable. (Non-overlapping means that no two disks intersect.)

A. 2

Give an example of a sequence $\left(a_{n}\right)$ of real numbers such that

$$
\inf _{n} a_{n}=1, \quad \liminf _{n \rightarrow \infty} a_{n}=2, \quad \limsup _{n \rightarrow \infty} a_{n}=3, \quad \text { and } \quad \sup _{n} a_{n}=4 .
$$

B Section 500 and Section 200: Do two of these problems.

B. 1

The producer of the television show "The Biggest Loser" proposes to define a metric d on the set of Texas A\&M students as follows: $d(x, y)=$ the maximum weight in pounds of students x and y if x and y are different students, and $d(x, y)=0$ if x and y are the same student. Does this proposed d satisfy all the properties of a metric? Explain.

B. 2

Constance misremembers the definition of continuity of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at a point x as the following statement:

For every positive ϵ and for every positive δ we have the inequality
$|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta$.
What well-known set of functions does Constance's property actually characterize? Explain.

Exam 1
Principles of Analysis I

B. 3

The irrational number e / π is approximately equal to 0.865255979432 . Does the number e / π belong to the Cantor set? Explain how you know.

B. 4

Let $\left(x^{(n)}\right)_{n=1}^{\infty}$ be a sequence in the space ℓ_{2} of square-summable sequences of real numbers. Thus

$$
x^{(n)}=\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots\right), \quad \text { and } \quad\left\|x^{(n)}\right\|_{2}=\left(\sum_{k=1}^{\infty}\left|x_{k}^{(n)}\right|^{2}\right)^{1 / 2} .
$$

Eleanor conjectures that $x^{(n)} \rightarrow 0$ in the normed space ℓ_{2} if and only if $x_{k}^{(n)} \rightarrow 0$ in \mathbb{R} for every k. Either prove or disprove Eleanor's conjecture.

C Section 200: Do both of these problems.

C. 1

For which values of p does the parallelogram law

$$
\|x+y\|_{p}^{2}+\|x-y\|_{p}^{2}=2\|x\|_{p}^{2}+2\|y\|_{p}^{2}
$$

hold for all elements x and y in the sequence space ℓ_{p} ? Explain.

C. 2

Alfie proposes the following "proof" that the real numbers between 0 and 1 form a countable set (a statement that we know to be false):

The decimals that have exactly one non-zero digit form a countable set; the decimals that have exactly two non-zero digits form a countable set; and so on. The set of all decimals is therefore the union of countably many countable sets, hence is itself a countable set.

Pinpoint the fatal error in Alfie's argument.

