
Math 446 Exam 2

Principles of Analysis I
Fall 2008

Instructions Please write your solutions on your own paper. Explain your
reasoning in complete sentences. Students in section 500 may substitute
problems from part C for problems in part A if they wish.

A Section 500: Do both of these problems.

A.1

Give an example of a metric space that is neither connected, nor totally
bounded, nor complete. Say why your example has the required properties.

Solution. One example is the rational numbers Q with the standard met-
ric. This space is disconnected because it is covered by the two nonempty,
disjoint, open subsets {x ∈ Q : x <

√
2 } and {x ∈ Q : x >

√
2 }. The

space is not bounded, so it is certainly not totally bounded. The space is not
complete, because a sequence of rational numbers converging in R to

√
2 is

a Cauchy sequence that does not converge to a point of Q.

A.2

Consider the space C[0, 1] of continuous functions on the closed interval [0, 1]
provided with the standard metric: d(f, g) = max0≤x≤1 |f(x) − g(x)|. Let

L : C[0, 1] → R be the function defined via L(f) =
∫ 1

0
f(x) sin(x) dx. Prove

that L is a continuous function.

Remark This problem is an instance of the general fact that the Fourier
coefficients of a function depend continuously on the function.

Solution. Observe that

|L(f)− L(g)| =
∣∣∣∣∫ 1

0

[f(x)− g(x)] sin(x) dx

∣∣∣∣ ≤ ∫ 1

0

|f(x)− g(x)| dx

≤
∫ 1

0

d(f, g) dx = d(f, g).

Consequently, we can be sure that |L(f) − L(g)| < ε whenever d(f, g) < ε.
In other words, the definition of continuity is satisfied with δ chosen to be
equal to ε.
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Remark. In the terminology that we recently learned, the function L is
uniformly continuous, since the choice of δ depends only on ε and not on f . In
fact, the function L satisfies a Lipschitz condition in the sense of Exercise 19
on page 66.

B Section 500 and Section 200: Do two of

these problems.

B.1

(a) Is it true in every metric space that every closed set is equal to the closure
of its interior? Give either a proof or a counterexample.

(b) Is it true in every metric space that every open set is equal to the interior
of its closure? Give either a proof or a counterexample.

Solution.

(a) If a nonempty closed set has empty interior, then the set is not equal
to the closure of its interior! Some examples of such sets in R (with the
standard metric) are finite sets of points, the set of integers, and the
Cantor set.

(b) An open set is certainly contained in the interior of its closure, but the
interior of the closure can be strictly larger than the original open set.
The complements of the examples in part (a) are examples of this phe-
nomenon. Each of these complements is an open subset of R whose
closure is all of R, so the interior of the closure is equal to R.

B.2

Suppose (M,d) is a complete metric space containing at least two points,
and suppose there is a point x0 in M such that (M \ {x0}, d) is a complete
metric space too. Prove that M is disconnected.
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Solution. I claim that there exists a positive radius r such that {x ∈M :
d(x, x0) < r } = {x0}. Indeed, if no such r exists, then there is a sequence
(xn) in M such that each xn is different from x0 and d(xn, x0) → 0. Then
(xn) is a Cauchy sequence in M \ {x0} that does not converge to a point of
M \ {x0}, contradicting the completeness of M \ {x0}.

Thus the singleton {x0} is an open subset of M (in fact, it is an open
ball). On the other hand, singletons are closed sets in any metric space.
Accordingly, the singleton set {x0} is a nontrivial subset of M that is simul-
taneously open and closed. Therefore the metric space M is disconnected
(by Theorem 6.1 on page 79).

B.3

Consider the following two subsets of the real numbers R equipped with the
standard metric: N is the set of natural numbers 1, 2, 3, . . . ; and S is the
set of reciprocals of natural numbers 1, 1/2, 1/3, . . . . Show that S is totally
bounded, N is not totally bounded, and N is homeomorphic to S.

Remark This example is a special instance of a general property: namely,
a metric space is separable if and only if it is homeomorphic to a totally
bounded space.

Solution. To see that S is totally bounded, fix a positive ε. Choose an
integer N larger than 1/ε. The ball Bε(1/N) contains every point 1/n for
which n ≥ N . Then S is covered by the finite number of balls Bε(1), Bε(1/2),
. . . , Bε(1/N). Since ε is arbitrary, the set S is totally bounded.

The set N is not bounded and therefore is not totally bounded. Indeed,
a ball of radius 1/3 in R contains at most one integer, so no finite number of
balls of radius 1/3 can cover N.

Since the points of N all are isolated, each point is an open subset of N, so
every subset of N is open relative to N. The set S has the same property for
the same reason. Hence any bijection between N and S is a homeomorphism,
for the inverse image of every open set is open, and the image of every open set
is open. Consequently, the obvious bijection n 7→ 1/n is a homeomorphism.
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B.4

In the sequence space `2 [the space of sequences x = (x1, x2, . . .) with norm

‖x‖2 = (
∑∞

n=1 |xn|2)1/2
], let S denote the set of absolutely summable se-

quences [that is, sequences (x1, x2, . . .) for which the series
∑∞

n=1 |xn| con-
verges]. Prove that S is dense in `2 [that is, the closure of S equals the whole
space `2].

Solution. Fix a point x in `2, and fix a positive ε. We need to show that
there exists an element y in S such that ‖x− y‖2 < ε.

By hypothesis, the series
∑∞

n=1 |xn|2 converges. Therefore there is some N
such that

∑∞
n=N |xn|2 < ε2. Define y by setting yn = xn when n < N , and

yn = 0 when n ≥ N . Obviously y ∈ S, since y has only finitely many nonzero
components. Now ‖x− y‖22 =

∑∞
n=N |xn − 0|2 < ε2, so ‖x− y‖2 < ε.

C Section 200: Do both of these problems.

C.1

Suppose f : (M,d) → (N, ρ) is a function between metric spaces with the
property that for every convergent sequence (xn) in M , the image sequence
(f(xn)) has a convergent subsequence. Must f be continuous? Supply a proof
or a counterexample, as appropriate.

Solution. Here is a counterexample. Take M and N both equal to R
with the standard metric. Define f(x) to be 0 when x is a rational number,
and set f(x) equal to 1 when x is an irrational number. Evidently f is
discontinuous. Whatever the sequence (xn) is (whether convergent or not),
the sequence of image values (f(xn)) is a sequence of 0’s and 1’s, so there
must be a convergent subsequence (since either 0 or 1 must appear infinitely
often in the sequence). The same argument applies to any function whose
range consists of a finite number of points.

C.2

Connie conjectures that the following statement holds in every complete met-
ric space: If (Fn) is a decreasing sequence of nonempty nested sets (that is,
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F1 ⊃ F2 ⊃ F3 ⊃ · · ·), if the set Fn is both closed and connected for every n,
and if the intersection

⋂∞
n=1 Fn is nonempty, then the intersection

⋂∞
n=1 Fn

must be connected. Either prove Connie’s conjecture or give a counterexam-
ple, as appropriate.

Solution. Here is a counterexample, based on the idea that a jacket holds
together when unzipped any finite amount, but falls apart when unzipped
all the way.

In R2, let En denote the open half strip { (x, y) : |x| < 1 and y < n }.
The open sets En form a nested increasing sequence. Let Fn denote the
complementary set R2 \ En. The closed sets Fn form a nested decreasing
sequence. Evidently each set Fn is connected (for any two points of Fn can
be joined by a polygonal path within Fn). The intersection

⋂∞
n=1 Fn consists

of the two separated half planes { (x, y) : x ≤ −1 } and { (x, y) : x ≥ 1 }.
Thus the intersection of all the sets Fn is nonempty and disconnected.
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