
Math 447 Assignment 9

Principles of Analysis II
Spring 2009

In this assignment, you will construct a periodic, continuous function
whose Fourier series has points of divergence. The existence of such a function
was an open question for half a century after Fourier’s work. Paul du Bois-
Reymond constructed the first example in the 1870s.

The idea is to begin by creating a trigonometric polynomial of high degree
such that a certain partial sum has large size at the origin even though the
whole sum is bounded by 1. Forming a convergent series of such trigonomet-
ric polynomials of progressively larger degrees produces the final example.
The method is an instance of “condensation of singularities” (a term coined
by Hermann Hankel in 1870); you saw a different implementation of this
technique in Assignment 6.

Recall the following notation from the textbook. If f ∈ L1[−π, π], then
sn(f) denotes the sum of the terms of the Fourier series of f up to degree n.
This partial sum of the Fourier series can be written as the convolution of f
with the Dirichlet kernel Dn:

sn(f)(x) =
1

π

∫ π

−π
Dn(x− t)f(t) dt.

The symbol σn(f) denotes the Cesàro mean [s0(f) + · · · + sn−1(f)]/n. This
trigonometric polynomial can be written as the convolution of f with the
Fejér kernel Kn:

σn(f)(x) =
1

π

∫ π

−π
Kn(x− t)f(t) dt.

1. Let f be an integrable function such that |f(x)| ≤ 1 for all x in the
interval [−π, π]. Show that |σn(f)(x)| ≤ 1 for every positive integer n
and for every real number x.

2. Let f be an integrable function such that |f(x)| ≤ 1 for all x in the
interval [−π, π]. Let gn denote σn2(f), which is a trigonometric polyno-
mial of degree (at most) n2 − 1. Show that |sn(gn)(x)− sn(f)(x)| ≤ 4
for every positive integer n and for every real number x.

Recall from the proof of Lemma 15.2(e) that

1

π

∫ π

−π
|Dn(t)| dt > 4 log(n+ 1)

π2
. (†)
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The textbook states the inequality with log n instead of log(n + 1), but the
stronger inequality (†) follows from the same argument: in the last line of
the proof on page 252, observe that comparing a sum of areas of boxes
with the area under the graph of the function 1/x shows that

∑n
k=1(1/k) >∫ n+1

1
(1/x) dx = log(n + 1), a slight improvement over the author’s log n.

(This improved inequality holds for every nonnegative integer n, while the
author’s inequality has an undefined term when n = 0.)

3. Let fn(x) denote |Dn(x)|/Dn(x) when Dn(x) 6= 0, and let fn(x) be 0
when Dn(x) = 0. In other words, fn(x) is the “sign function” of Dn(x).
Thus Dn(x)fn(x) = |Dn(x)| for all x. Let hn denote the trigonometric
polynomial σn2(fn). Show that

sn(hn)(0) >
4 log(n+ 1)

π2
− 4

for every positive integer n.

4. For each positive integer k, let nk denote the integer 23k
. (The form

of nk will be important in part 5: in particular, nk+1 = n3
k.) Using the

functions hn from part 3, define a function h as follows:

h(x) =
∞∑
k=1

2−khnk
(nkx).

Show that h is a continuous function on R, periodic with period 2π.

5. Show that sn2
j
(h)(0) → ∞ as j → ∞, and deduce that the Fourier

series of the continuous function h diverges at 0. [Hint: split the sum
defining h into three pieces according as k < j, k = j, or k > j.]
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