Instructions Solve four of the following six problems. Please write your solutions on your own paper. Explain your reasoning in complete sentences.

1. Let f be a function of bounded variation on the interval $[0,1]$. Suppose there is a positive number δ such that $|f(x)| \geq \delta$ for every x (in other words, the function f is bounded away from 0). Show that the reciprocal function $1 / f$ is a function of bounded variation.

Solution. Suppose $0=x_{0}<x_{1}<\cdots<x_{n}=1$. These points x_{k} define a partition P of the interval $[0,1]$. The quantity $V(1 / f, P)$, the variation of the function $1 / f$ with respect to the partition P, equals

$$
\sum_{k=1}^{n}\left|\frac{1}{f\left(x_{k}\right)}-\frac{1}{f\left(x_{k-1}\right)}\right|
$$

Observe that

$$
\left|\frac{1}{f\left(x_{k}\right)}-\frac{1}{f\left(x_{k-1}\right)}\right|=\frac{\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|}{\left|f\left(x_{k}\right) f\left(x_{k-1}\right)\right|} \leq \frac{1}{\delta^{2}}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|
$$

for each k. Therefore $V(1 / f, P) \leq \delta^{-2} V(f, P) \leq \delta^{-2} V_{0}^{1}(f)$, where $V_{0}^{1}(f)$ denotes the total variation of f. Taking the supremum over all partitions P shows that the function $1 / f$ has bounded variation, and moreover the total variation of this function does not exceed $\delta^{-2} V_{0}^{1}(f)$.
2. Give a concrete example of a uniformly convergent sequence $\left(f_{n}\right)$ of functions of bounded variation on the interval $[0,1]$ such that the limit function does not have bounded variation.

Solution. You saw in class the standard example of a continuous function f that does not have bounded variation: namely,

$$
f(x)= \begin{cases}x \sin (1 / x), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

To make use of this example, define f_{n} as follows:

$$
f_{n}(x)= \begin{cases}x \sin (1 / x), & \text { if } x>1 / n \\ 0, & \text { if } x \leq 1 / n\end{cases}
$$

The function f_{n} has bounded variation because the graph consists of finitely many bounded, monotonic pieces. (The number of pieces grows with n, however.) The sequence $\left(f_{n}\right)$ converges uniformly to f because

$$
\sup _{0 \leq x \leq 1}\left|f_{n}(x)-f(x)\right| \leq 1 / n
$$

3. If α is a nondecreasing function on the closed interval $[-\pi, \pi]$, is it necessarily true that $\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} \cos (n x) d \alpha(x)=0$? (In other words, does the Riemann-Lebesgue lemma carry over to the setting of the Stieltjes integral?) Give either a proof or a counterexample.

Solution. For a counterexample, consider the step function α such that $\alpha(x)=0$ if $x<0$, and $\alpha(x)=1$ if $x \geq 0$. You know from class and from the homework exercises that Stieltjes integration against this α acts like a "delta function": in other words, $\int_{-\pi}^{\pi} \cos (n x) d \alpha(x)=\cos (0)=1$ for every n. Hence $\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} \cos (n x) d \alpha(x) \neq 0$.

Remark If α is differentiable and has a derivative that is Riemann integrable, then $\int_{-\pi}^{\pi} \cos (n x) d \alpha(x)=\int_{-\pi}^{\pi} \cos (n x) \alpha^{\prime}(x) d x$ [by Theorem 14.18 on page 232]; in this case, the limit of the integral is equal to 0 by the usual Riemann-Lebesgue lemma [equation (15.4) on page 248 or Theorem 19.17 on page 353].
4. Let f be a bounded function that is Riemann-Stieltjes integrable with respect to the increasing function α on the interval $[0,1]$. Prove that f is Riemann-Stieltjes integrable with respect to α^{2} on the same interval. In other words, if $\int_{0}^{1} f d \alpha$ exists, then so does $\int_{0}^{1} f d\left(\alpha^{2}\right)$.

Remark added May 12 The solution below assumes that the function α^{2} is increasing, which need not be the case. [The function $\alpha(x)$ might be $x-1 / 2$, for example.] There are a couple of ways to reduce to the situation in which α^{2} is increasing.

1. Either α is nonnegative (in which case α^{2} is increasing), or α is nonpositive (in which case α^{2} is decreasing, and $-\alpha^{2}$ is increasing), or there is a point c where α changes sign from negative to positive (in which case α^{2} is decreasing on the interval $[0, c]$ and increasing on the

Principles of Analysis II

interval $[c, 1]$). In the first case, the argument below applies. In the second case, the argument below shows that $\int_{0}^{1} f d\left(-\alpha^{2}\right)$ exists, and it follows from the definitions that $\int_{0}^{1} f d\left(-\alpha^{2}\right)=-\int_{0}^{1} f d\left(\alpha^{2}\right)$. In the third case, use the preceding two cases to deduce that both $\int_{0}^{c} f d\left(\alpha^{2}\right)$ and $\int_{c}^{1} f d\left(\alpha^{2}\right)$ exist; hence $\int_{0}^{1} f d\left(\alpha^{2}\right)$ exists.
2. Alternatively, observe that there is a constant k for which the function $\alpha+k$ is positive (any value of k greater than $|\alpha(0)|$ will do). The argument below implies that $\int_{0}^{1} f d\left((\alpha+k)^{2}\right)$ exists. It is routine to see that existence of $\int_{0}^{1} f d \alpha$ implies existence of $\int_{0}^{1} f d\left(2 k \alpha+k^{2}\right)$ [which equals $\left.2 k \int_{0}^{1} f d \alpha\right]$, and the difference $\int_{0}^{1} f d\left((\alpha+k)^{2}\right)-\int_{0}^{1} f d\left(2 k \alpha+k^{2}\right)$ equals $\int_{0}^{1} f d\left(\alpha^{2}\right)$.

Solution. Fix an arbitrary positive ε. The integrability of f with respect to α implies (by Riemann's condition) that there is a partition P such that the upper sum $U_{\alpha}(f, P)$ and the lower sum $L_{\alpha}(f, P)$ differ by less than ε. In other words, there is a subdivision of the interval $[0,1]$ into n subintervals $\left[x_{k-1}, x_{k}\right]$ such that if M_{k} and m_{k} denote the supremum and the infimum of f on $\left[x_{k-1}, x_{k}\right]$, then

$$
\sum_{k=1}^{n}\left(M_{k}-m_{k}\right)\left[\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)\right]=U_{\alpha}(f, P)-L_{\alpha}(f, P)<\varepsilon .
$$

The goal is to estimate the difference between upper and lower sums with respect to α^{2}. The function α is increasing, so $\alpha\left(x_{k}\right)^{2}-\alpha\left(x_{k-1}\right)^{2}=$ $\left[\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)\right]\left[\alpha\left(x_{k}\right)+\alpha\left(x_{k-1}\right)\right] \leq 2 \alpha(1)\left[\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)\right]$. Therefore

$$
\begin{aligned}
U_{\alpha^{2}}(f, P)-L_{\alpha^{2}}(f, P) & =\sum_{k=1}^{n}\left(M_{k}-m_{k}\right)\left[\alpha\left(x_{k}\right)^{2}-\alpha\left(x_{k-1}\right)^{2}\right] \\
& \leq 2 \alpha(1)\left[U_{\alpha}(f, P)-L_{\alpha}(f, P)\right] \leq 2 \varepsilon \alpha(1)
\end{aligned}
$$

Since ε is arbitrary, Riemann's condition implies that f is integrable with respect to α^{2}.
5. Determine the Fourier series of the odd function on the interval $[-\pi, \pi]$ that is equal to 1 on the interval $(0, \pi)$, and use the result to compute the value of the numerical series $\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}$.

Principles of Analysis II

Solution. The Fourier series of an odd function is a sine series of the form $\sum_{n=1}^{\infty} b_{n} \sin (n x)$. For the specified function,

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} 1 \cdot \sin (n x) d x=\frac{2}{\pi}\left[\frac{-\cos (n x)}{n}\right]_{0}^{\pi} \\
& =\frac{2}{n \pi}[-\cos (n \pi)+\cos (0)]= \begin{cases}\frac{4}{n \pi}, & \text { if } n \text { is odd, } \\
0, & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

Writing an odd integer n in the form $2 k+1$ shows that the Fourier series has the form

$$
\sum_{k=0}^{\infty} \frac{4}{(2 k+1) \pi} \sin [(2 k+1) x] .
$$

According to Parseval's equation, the sum of the squares of the Fourier coefficients equals $1 / \pi$ times the integral of the square of the function over the interval $[-\pi, \pi]$. Thus

$$
\frac{16}{\pi^{2}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{2}{\pi} \int_{0}^{\pi} 1^{2} d x=2, \quad \text { so } \quad \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8}
$$

Remark You summed this series using a different Fourier series in Assignment 8.
6. Suppose $f \in L_{2}[-\pi, \pi]$. Then $s_{n}(f)$, the nth partial sum of the Fourier series of f, has the property that $\lim _{n \rightarrow \infty}\left\|s_{n}(f)-f\right\|_{2}=0$ (according to the Riesz-Fischer theorem). Use this result to prove that the Cesàro sum $\sigma_{n}(f)$, which is the average $\left[s_{0}(f)+\cdots+s_{n-1}(f)\right] / n$, has the corresponding property that $\lim _{n \rightarrow \infty}\left\|\sigma_{n}(f)-f\right\|_{2}=0$.

Solution. Fix an arbitrary positive ε. By the Riesz-Fischer theorem, there is a positive integer N such that $\left\|s_{k}(f)-f\right\|_{2}<\varepsilon / 2$ when $k \geq N$.

Principles of Analysis II

Thus when $n>N$, the definition of $\sigma_{n}(f)$ implies that

$$
\begin{aligned}
\left\|\sigma_{n}(f)-f\right\|_{2} & =\left\|\frac{\left[s_{0}(f)-f\right]+\cdots+\left[s_{n-1}(f)-f\right]}{n}\right\|_{2} \\
& \leq \frac{1}{n} \sum_{k=0}^{N-1}\left\|s_{k}(f)-f\right\|_{2}+\frac{1}{n} \sum_{k=N}^{n-1}\left\|s_{k}(f)-f\right\|_{2} \\
& <\frac{\varepsilon}{2}+\frac{1}{n} \sum_{k=0}^{N-1}\left\|s_{k}(f)-f\right\|_{2} .
\end{aligned}
$$

Since N is fixed (dependent on ε but not on n), the second term in the third line of the displayed formula will be less than $\varepsilon / 2$ when n is sufficiently large. Hence $\left\|\sigma_{n}(f)-f\right\|_{2}<\varepsilon$ when n is sufficiently large. Therefore $\lim _{n \rightarrow \infty}\left\|\sigma_{n}(f)-f\right\|_{2}=0$.

Bonus problem For extra credit, prove either the Riesz representation theorem characterizing the dual space of $C[0,1]$ or Jordan's decomposition theorem for functions of bounded variation.

Solution. We did these proofs in class, and there are proofs in the book too (pages 237-239 and 207).

