1. Evaluate the complex line integral

$$
\int_{\gamma} \frac{(z-3)}{(z-1)(z-2)} d z
$$

where γ is the circular path defined by $\gamma(t)=\frac{3}{2} e^{2 \pi i t}, 0 \leq t \leq 1$.
2. Determine the radius of convergence of the gap series

$$
\sum_{n=1}^{\infty} \frac{z^{n^{2}}}{3^{n}}=\frac{z}{3}+\frac{z^{4}}{9}+\frac{z^{9}}{27}+\cdots
$$

3. Suppose that f is a holomorphic function, and let u and v denote the real and imaginary parts of f. Prove that the product $u v$ is a harmonic function.
4. Suppose f is a function that is holomorphic in the unit disk $D(0,1)$ and that satisfies the inequality $|f(z)|<2$ when $|z|<1$. If the power series expansion for f is given by

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

how big can the coefficient $\left|a_{617}\right|$ be?
5. A calculus student named Lee knows that since $(-2)^{3}=-8$, the cube root of -8 is equal to -2 . Lee is therefore puzzled to observe that the computer algebra system Maple responds to the input

$$
(-8.0)^{\wedge}(1 / 3) ;
$$

with the output

$$
1.000000000+1.732050807 * I
$$

(which is a numerical approximation of $1+i \sqrt{3}$). Write an explanation to resolve Lee's perplexity. You may assume that Lee knows what complex numbers are.

