Instructions In each item, either give a concrete example satisfying the conditions or prove that no example exists (whichever is appropriate). Work as many of the 16 items as you wish.

Your score for n correct items is $10 \min (n, 8)+5 \max (n-8,0)$; that is, your first 8 correct items count 10 points each, and additional correct items count 5 points each. (More than 12 correct items will give you extra credit: namely, a score greater than 100.)

1. A non-empty open set U and a holomorphic function f on U such that there does not exist a holomorphic function g on U with the property that the derivative $g^{\prime}=f$.
2. A non-empty open set U, a holomorphic function f on U, and a simple closed curve γ in U such that $\int_{\gamma} f(z) d z=\sqrt{2}$.
3. A holomorphic function f on the unit $\operatorname{disc}\{z \in \mathbb{C}:|z|<1\}$ such that the nth derivative $f^{(n)}(0)=(n!)^{2}$ for every positive integer n.
4. A non-polynomial entire function with exactly one zero.
5. A holomorphic function f on the disc $\{z \in \mathbb{C}:|z|<2\}$ such that $f(1 / n)=(-1)^{n} / n$ for every positive integer n.
6. A holomorphic function f on the punctured disc $\{z \in \mathbb{C}: 0<|z|<2\}$ such that $\int_{|z|=1} f(z) d z=0$, and f has an essential singularity at the origin.
7. A rational function f having a pole at 0 such that the residue of f at 0 equals 2 and the residue of the derivative f^{\prime} at 0 equals 1 .
8. A positive real number a such that $\int_{-\infty}^{\infty} \frac{1}{x^{4}+a^{4}} d x=1$.
9. A holomorphic function (not necessarily one-to-one) that maps the unit $\operatorname{disc}\{z \in \mathbb{C}:|z|<1\}$ onto the punctured disc $\{z \in \mathbb{C}: 0<|z|<1\}$.
10. A continuous function f on the closed $\operatorname{disc}\{z \in \mathbb{C}:|z| \leq 1\}$ that is holomorphic in the open disc, has 617 simple zeroes in the open disc, and satisfies the inequality $|f(z)| \leq 1$ when $|z| \leq 1$.
11. A continuous function on the upper half-plane $\{z \in \mathbb{C}: \operatorname{Im} z \geq 0\}$ that is holomorphic in the open half-plane and that satisfies the property $\sup \{|f(z)|: \operatorname{Im} z>0\} \neq \sup \{|f(z)|: \operatorname{Im} z=0\}$.
12. A linear fractional transformation (Möbius transformation) f such that $f(1)=1, f(2)=4, f(3)=9$, and $f(4)=16$.
13. A holomorphic function mapping the unit disc $\{z \in \mathbb{C}:|z|<1\}$ into itself such that $f(1 / 2)=-1 / 2$, and the derivative $f^{\prime}(1 / 2)=1$.
14. A family of entire functions such that the image of each function is contained in the punctured plane $\mathbb{C} \backslash\{0\}$, and the family is not a normal family.
15. A continuous, real-valued function on the plane \mathbb{C} whose restriction to the upper half-plane $\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ is harmonic and whose restriction to the lower half-plane $\{z \in \mathbb{C}: \operatorname{Im} z<0\}$ is harmonic, but which is not a harmonic function on all of \mathbb{C}.
16. A continuous, real-valued function u on the closed unit disc $\{z \in \mathbb{C}$: $|z| \leq 1\}$, harmonic in the open disc, such that $u(1 / 2)=3 / 4$, and $|u(z)| \leq 1$ on the boundary of the disc.
