Exercise on properties of holomorphic functions

The goal of this exercise is to solidify your understanding of some theorems about the local and global properties of holomorphic functions: (1) the open mapping theorem, (2) the maximum modulus theorem, (3) Rouché's theorem, and (4) the Schwarz lemma.

1. The set $\{z \in \mathbb{C}:|\operatorname{Re} z|<|\operatorname{Im} z|\}$ is an open set, and the function f defined by $f(z)=(\operatorname{Im} z) /|\operatorname{Im} z|$ is holomorphic on the set and not constant; yet the range of f is not open. Why doesn't this contradict the open mapping theorem?
2. Consider the exponential function on the right half-plane $\{z \in \mathbb{C}$: $\operatorname{Re} z>0\}$. The maximum of $|\exp (z)|$ for z in the boundary of the right half-plane is 1 , yet $|\exp (z)|$ is unbounded on the right-half plane. Why doesn't this contradict the maximum modulus theorem?
3. Let f be the constant function 2 , and let g be the constant function -1 . Then f and g have the same number of zeroes inside the unit disc (namely, none), yet the inequality

$$
|f(z)-g(z)|<|f(z)|+|g(z)|
$$

is false at all boundary points of the unit disc. Why doesn't this contradict Rouché's theorem?
4. Suppose that f is a holomorphic function from the unit disc into itself. If $f(0)=1 / 2$, how big can $\left|f^{\prime}(0)\right|$ be? Can you find an example that achieves your upper bound?

