1. Let E denote the open subset of the complex plane defined by $E:=$ $\{z \in \mathbb{C}:|\sin (z)|<|z|\}$. Show that the area of the set E is infinite.

Solution. By the triangle inequality, $|\sin z| \leq \frac{1}{2}\left(\left|e^{i z}\right|+\left|e^{-i z}\right|\right)=$ $\frac{1}{2}\left(e^{-y}+e^{y}\right) \leq e^{|y|}$. Therefore, if $0<y<1$ and $x>3$, we have $|\sin z|<e<x<|z|$. Hence the set E contains an unbounded halfstrip of height 1 , so E certainly has infinite area.
2. Solve exercise 2.4 in the textbook: namely, derive the Cauchy-Riemann equations in polar coordinates.

Solution. If the derivative f^{\prime} exists as a two-dimensional limit, then on the one hand $f^{\prime}(z)$ equals

$$
\lim _{h \rightarrow 0} \frac{f\left((r+h) e^{i \theta}\right)-f\left(r e^{i \theta}\right)}{h e^{i \theta}}=e^{-i \theta} \frac{\partial f}{\partial r}(z),
$$

and on the other hand $f^{\prime}(z)$ equals

$$
\lim _{\psi \rightarrow 0} \frac{f\left(r e^{i(\theta+\psi)}\right)-f\left(r e^{i \theta}\right)}{r e^{i \theta}\left(e^{i \psi}-1\right)}=\frac{e^{-i \theta}}{r} \frac{\partial f}{\partial \theta}(z) \frac{1}{\partial e^{i \psi} / \partial \psi(0)}=\frac{-i e^{-i \theta}}{r} \frac{\partial f}{\partial \theta}(z) .
$$

Equating the two expressions shows that $\frac{\partial f}{\partial r}=\frac{-i}{r} \frac{\partial f}{\partial \theta}$. Taking real and imaginary parts reveals that $\frac{\partial U}{\partial r}=\frac{1}{r} \frac{\partial V}{\partial \theta}$ and $\frac{\partial V}{\partial r}=-\frac{1}{r} \frac{\partial U}{\partial \theta}$.
Alternatively, one can start from the Cauchy-Riemann equations in rectangular coordinates and apply the chain rule:

$$
\begin{aligned}
\frac{\partial U}{\partial r} & =\frac{\partial U}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial U}{\partial y} \frac{\partial y}{\partial r}=\frac{\partial U}{\partial x} \cos \theta+\frac{\partial U}{\partial y} \sin \theta \\
\frac{\partial V}{\partial \theta} & =\frac{\partial V}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial V}{\partial y} \frac{\partial y}{\partial \theta}=-\frac{\partial V}{\partial x} r \sin \theta+\frac{\partial V}{\partial y} r \cos \theta \\
& =\frac{\partial U}{\partial y} r \sin \theta+\frac{\partial U}{\partial x} r \cos \theta
\end{aligned}
$$

Hence $\frac{\partial V}{\partial \theta}=r \frac{\partial U}{\partial r}$; and similarly for the second of the Cauchy-Riemann equations.
3. We know that a power series converges absolutely in a certain disk. Consider instead a Dirichlet series of the form

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{z}}, \tag{1}
\end{equation*}
$$

where the complex numbers a_{n} are constants (independent of the variable z), and the expression n^{z} means, by definition, $\exp (z \ln n)$, where \ln denotes the natural logarithm of a positive real number. Set

$$
A:=\limsup _{n \rightarrow \infty} \frac{\ln \left|a_{n}\right|}{\ln n} .
$$

Supposing that A is finite, show that the Dirichlet series (1) converges absolutely when $\operatorname{Re} z>A+1$.

Solution. With no extra work, one can show that the convergence is absolute and uniform in any half-plane where $\operatorname{Re} z \geq B>A+1$. Indeed, let C be a number such that $B>C>A+1$. Then there is a number N such that $\frac{\ln \left|a_{n}\right|}{\ln n}<C-1$ when $n>N$. Now $\left|a_{n}\right|<n^{C-1}$ for such n, which means that

$$
\left|\frac{a_{n}}{n^{z}}\right|<\frac{n^{C-1}}{n^{B}}=\frac{1}{n^{B-C+1}} .
$$

Since $B-C+1>1$, the series $\sum_{n} 1 / n^{B-C+1}$ converges, and so the dominated series $\sum_{n} a_{n} / n^{z}$ converges absolutely and uniformly in the indicated closed half-plane $\{z: \operatorname{Re} z \geq B\}$.
4. The power series $1-z+z^{2}-z^{3}+\cdots$ is a geometric series that converges to $1 /(1+z)$ when $|z|<1$. Consequently, one expects that the formal anti-derivative

$$
L(z):=z-\frac{1}{2} z^{2}+\frac{1}{3} z^{3}-\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^{n}
$$

should have the properties of a logarithm of $1+z$. Prove that indeed $\exp (L(z))=1+z$ when $|z|<1$.
You may assume that a power series can be differentiated term by term inside the open disk of convergence (a fact that we have stated but not yet officially proved).

Solution. Let $f(z)$ denote the function $(1+z) e^{-L(z)}$. Then $f^{\prime}(z)=$ $e^{-L(z)}-(1+z) e^{-L(z)} L^{\prime}(z)=0$. Hence f is a constant function, so $c e^{L(z)}=1+z$. When $z=0$ one finds that $c=1$. Hence $e^{L(z)}=1+z$.
5. Let C be a continuously differentiable simple closed curve equipped with the standard counterclockwise orientation. Show that $\int_{C}(\operatorname{Im} z) d z$ equals the negative of the area of the region enclosed by the curve C.

Solution. Green's theorem in complex form says that

$$
\int_{C} f(z) d z=2 i \iint \frac{\partial f}{\partial \bar{z}} d x d y
$$

Since $\operatorname{Im} z=\frac{1}{2 i}(z-\bar{z})$, one has that $\frac{\partial \operatorname{Im} z}{\partial \bar{z}}=\frac{-1}{2 i}$. Inserting this information into Green's theorem shows that

$$
\int_{C} \operatorname{Im} z d z=\iint-d x d y
$$

which indeed equals the negative of the area of the region enclosed by the curve C.
6. Suppose f is an analytic function in the unit disk $\{z \in \mathbb{C}:|z|<1\}$. Then, by definition, the function f has a derivative. This problem asks you to show that the function f also is a derivative. Namely, set

$$
F(z):=\int_{0}^{1} z f(t z) d t \quad \text { when }|z|<1
$$

Prove that F is differentiable and that $F^{\prime}(z)=f(z)$.
Solution. Observe that $F(z)$ equals $\int_{C} f(w) d w$, where C is the path parametrized by $t z, 0 \leq t \leq 1$. Cauchy's theorem implies, however, that the integral is independent of the path joining 0 to z. Consequently, $F(z+h)-F(z)$ equals the integral of f along any path joining z to $z+h$, for instance the path parametrized by $z+t h, 0 \leq t \leq 1$. Therefore

$$
\frac{F(z+h)-F(z)}{h}=\frac{1}{h} \int_{0}^{1} f(z+t h) h d t=\int_{0}^{1} f(z+t h) d t .
$$

Since f is continuous at z, the integral converges when $h \rightarrow 0$ to $\int_{0}^{1} f(z) d t$, that is, to $f(z)$. Thus $F^{\prime}(z)$ exists and equals $f(z)$.

