
Math 617 Examination 3 November 21, 2006

Instructions Do any five of the following seven problems.

1. Can a rational function have residue at 0 equal to 1 and residue at
infinity equal to 2? Either give an example or prove that none exists.

Solution. One example is
1

z
−

3

z + 1
.

2. Discuss the equation
log(z) = log( z ),

where, as usual, the overline indicates complex conjugation. Is the
equation always true? In other words, is the complex conjugate of the
logarithm always equal to the logarithm of the complex conjugate? If
not, what additional conditions will make this true?

Solution. In order for both sides to make sense, one must assume
that z 6= 0. Then the left-hand side equals ln |z| − i arg z, and the
right-hand side equals ln |z| + i arg z. Hence the two sides are equal
if and only if arg z = − arg z. These two quantities are always equal
as sets of values. If, however, one is dealing with a function (that is,
with a specific branch of the logarithm), then equality holds only for
the principal branch of the logarithm.

3. The following calculation leads to the absurd conclusion that L = iL
(where L 6= 0).

L :=

∫

∞

0

exp(−x4) dx
(x=iu)

=

∫

∞

0

exp(−u4) i du = iL.

Explain the error.

[This is supplementary exercise 2 on page 116.]

Solution. The integrals are improper, so they must be understood as
limits. Consider integrating e−z4

over the closed contour in the first
quadrant consisting of the segment of the real axis from 0 to R, a
quarter circle of radius R, and the segment of the imaginary axis from
iR to 0. Since the integrand has no singularities, the integral equals 0
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by Cauchy’s theorem. Parametrizing the three parts of the contour
shows that

∫ R

0

e−x4

dx +

∫ π/2

0

exp(−R4e4iθ) iReiθ dθ =

∫ R

0

e−u4

i du.

The (false) claim that L = iL is equivalent to the (false) claim that
the second integral above tends to 0 as R tends to infinity. There is
no reason to expect the second integral to tend to 0, because when
π/8 < θ < 3π/8, the real part of −e4iθ is positive, so the integrand has
exponential growth.

4. A student reasons as follows: “The plane with the half line (−∞, 0]
removed (that is, the set C \ { z = x + iy : y = 0 and x ≤ 0 })
is a simply connected region on which the function z2 has no zeroes.
Therefore we can define a branch of log(z2) on this region. Since the
function z2 is an even function, this branch of log(z2) actually makes
sense on the domain C \ {0}: namely, log((−z)2) = log(z2). Then we
can define a branch of log(z) on C \ {0} by setting log(z) = 1

2
log(z2).”

We know that there does not exist a global logarithm log(z) on C\{0},
so there is a flaw in the reasoning somewhere. Pinpoint the error.

Solution. Although the notation log(f(z)) looks just like the notation
sin(f(z)), the meaning is different. The function log f is not necessarily
the composition of a function “log” with the function f , because log
may not be defined globally on the whole range of f . What log f
actually means is either a function whose derivative is f ′/f or a function
whose exponential is f .

Taking the second point of view, one can see that if log(z) denotes the
principal branch of the logarithm on the slit plane, then the exponential
of 2 log(z), namely exp(2 ln |z| + 2i arg z), equals z2. Taking the first
point of view, one should define log(z2) as

∫ z

1
(2w/w2) dw, or 2 log(z).

From either point of view, it is correct to say that log(z2) = 2 log(z)
in the slit plane, using the principal branch of log(z). Evidently the
function log(z2) is not an even function, even though z2 is an even
function.
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5. A student reasons as follows: “By symmetry,

∫

∞

−∞

sin(x)

1 + x2
dx = 0. On

the other hand, integrating
sin(z)

1 + z2
over a closed contour in the upper

half plane and passing to the limit shows that the original integral over

the real axis equals 2πi times the residue at z = i, or 2πi ×
sin(i)

2i
=

π sin(i). Therefore sin(i) = 0.”

Explain what went wrong.

Solution. The integral over the added piece of contour in the upper
half-plane does not tend to 0 in the limit, because the function sin(z) is
unbounded in the upper half-plane. In fact, for every fixed x, we have
limy→∞ | sin(x + iy)| = ∞.

The right way to handle the given integral is to treat it as the imaginary

part of

∫

∞

−∞

eix

1 + x2
dx.

6. A formula due to Cauchy says that

∫

∞

−∞

1

(1 + x2)(1 − iax)s
dx =

π

(1 + a)s
(a > 0, s > 0).

Prove the formula.
[If the positive number s is not an integer, then the power in the de-
nominator of the integral is ambiguous. Assume in this case that the
principal branch of the power is taken.]

Solution. Let CR be the contour consisting of the real axis from −R
to R and a semi-circle of (large) radius R in the upper half-plane, and
consider

∫

CR

1

(1 + z2)(1 − iaz)s
dz.

Since z has positive imaginary part inside the contour, and a > 0,
the quantity (1 − iaz) lies in the right-hand half-plane. Therefore the
power (1−iaz)s can be defined as exp{s log(1−aiz)} using the principal
branch of the logarithm.
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Since a > 0, the only singularity of the integrand inside the contour is

at i. The residue at i equals
1

2i(1 + a)s
. By the residue theorem, the

integral over CR equals
2πi

2i(1 + a)s
=

π

(1 + a)s
.

It remains to show that the integral over the semi-circle in the upper
half-plane tends to 0 as R → ∞. Since the length of the path equals πR,

and (for large R) the integrand is no bigger than
1

(R2 − 1)(aR − 1)s
=

O(1/R2+s), the integral does indeed tend to 0.

7. Prove that
∫

∞

0

1

1 + xn
dx =

π/n

sin(π/n)
, n = 2, 3, 4, . . . .

Solution. There are two natural ways to compute the integral, one
using a pie-shaped contour and one using a keyhole contour.

For the first method, let CR denote the contour consisting of the real
axis from 0 to R, an arc of the circle of radius R from angle 0 to
angle 2π/n, and a ray back to the origin at angle 2π/n. Integrate the
function 1/(1 + zn) over the contour. The only pole inside the contour
is at eiπ/n, so the integral over CR equals

2πi

nzn−1

∣

∣

∣

∣

z=eiπ/n

=
2πi

−ne−iπ/n
.

The integral over the arc is no bigger than
2πR/n

Rn − 1
= O(1/Rn−1). For

the ray at angle 2π/n, use the parametrization z = te2πi/n to get

−e2πi/n

∫ R

0

1

1 + tn
dt.

Putting the pieces together gives

−2πieiπ/n

n
=

(

1 − e2πi/n
)

∫ R

0

1

1 + xn
dx + O(1/Rn−1).
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Taking the limit as R → ∞ shows that

∫

∞

0

1

1 + xn
dx =

π

n
·

2ieiπ/n

e2πi/n − 1
=

π

n
·

2i

eiπ/n − e−iπ/n
=

π/n

sin(π/n)
.

The second method starts by transforming the original real integral by
substituting t for xn:

∫

∞

0

1

1 + xn
dx =

1

n

∫

∞

0

t−(n−1)/n

1 + t
dt.

Because of the fractional power, a keyhole contour is appropriate, us-

ing the integrand
z−(n−1)/n

1 + z
. The contribution from the large circle at

radius R is at most 2πR times
R−(n−1)/n

R − 1
, and hence tends to 0 as

R → ∞. The contribution from the small circle at radius ǫ is at most

2πǫ times
ǫ−(n−1)/n

1 − ǫ
, so this too tends to 0 as ǫ → 0.

The integral over the real axis “from below” is out of phase relative to
the integral over the real axis “from above” by a factor e−(n−1)2πi/n =
e2πi/n, so the residue theorem gives

(

1 − e2πi/n
)

∫

∞

0

t−(n−1)/n

1 + t
dt = 2πi(−1)−(n−1)/n = 2πie−(n−1)πi/n.

Thus

∫

∞

0

1

1 + xn
dx =

2πi

n
·

e−πieπi/n

1 − e2πi/n
=

2πi

n
·

1

eπi/n − e−πi/n
,

which simplifies as before to the desired answer.
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