The first problem on the sixth homework assignment asked you to find an example of a sequence $\left\{a_{n}\right\}$ of complex numbers such that the series $\sum_{n=1}^{\infty} a_{n}$ converges (conditionally), yet the series $\sum_{n=1}^{\infty} a_{n}^{3}$ diverges. Here are some remarks about this problem.

First of all, there is no hope of finding an example in which $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent. Indeed, the terms of a convergent series must tend to 0 , so when n is sufficiently large, it will be the case that $\left|a_{n}\right| \leq 1$, whence $\left|a_{n}^{3}\right| \leq\left|a_{n}\right|$. Therefore the series $\sum_{n=1}^{\infty} a_{n}^{3}$ will be absolutely convergent if $\sum_{n=1}^{\infty} a_{n}$ is.

Consequently, one has to seek for the required example among the conditionally convergent series. The most popular example is to set a_{n} equal to $\frac{\exp (2 \pi i n / 3)}{n^{1 / 3}}$. Then $a_{n}^{3}=1 / n$, so the series $\sum_{n=1}^{\infty} a_{n}^{3}$ is the divergent harmonic series. What remains to check is that the series $\sum_{n=1}^{\infty} a_{n}$ does converge.

Method 1 In your first calculus class, you probably learned a convergence test for alternating series stating that if $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive real numbers monotonically decreasing to 0 , then the series $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges. But this test does not fit the situation at hand.

You may or may not have seen a generalization of the alternating-series test that does apply. Namely, Dirichlet's test says that if (as before) $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive real numbers monotonically decreasing to 0 , and if $\sum_{n=1}^{\infty} c_{n}$ is a possibly divergent series of complex numbers having bounded partial sums (that is, $\left|\sum_{n=1}^{k} c_{n}\right|$ stays bounded independently of k), then the series $\sum_{n=1}^{\infty} c_{n} b_{n}$ converges. (In the alternating-series test, $c_{n}=(-1)^{n}$, so $\left|\sum_{n=1}^{k} c_{n}\right|$ is either 0 or 1 , hence bounded independently of k.) Dirichlet's test is present-but not prominent-in the textbook: see Problem 8(a) on page 18 in Chapter 2. (The authors do not name the test.)

To apply the test to solve your problem, set b_{n} equal to $1 / n^{1 / 3}$ and c_{n} equal to $\exp (2 \pi i n / 3)$. Since

$$
\begin{equation*}
\exp (2 \pi i / 3)+\exp (4 \pi i / 3)+\exp (6 \pi i / 3)=0 \tag{1}
\end{equation*}
$$

it follows that each partial sum $\sum_{n=1}^{k} c_{n}$ is either $\exp (2 \pi i / 3)$ or $\exp (2 \pi i / 3)+\exp (4 \pi i / 3)$ (which simplifies to -1) or 0 . Thus these partial sums all have modulus bounded by 1 , and Dirichlet's test implies that $\sum_{n=1}^{\infty} \frac{\exp (2 \pi i n / 3)}{n^{1 / 3}}$ does converge.
(The proof of Dirichlet's test, incidentally, is based on Abel's technique of partial summation, analogous to integration by parts.)

Method 2 It is possible to verify the convergence by concrete estimation of groups of terms, as follows. The mean-value theorem from real calculus, applied to the function $1 / x^{1 / 3}$, implies that

$$
\begin{equation*}
\left|\frac{1}{(n+1)^{1 / 3}}-\frac{1}{n^{1 / 3}}\right| \leq \frac{1}{3} \cdot \frac{1}{n^{4 / 3}} \quad \text { and } \quad\left|\frac{1}{(n+2)^{1 / 3}}-\frac{1}{n^{1 / 3}}\right| \leq \frac{2}{3} \cdot \frac{1}{n^{4 / 3}} . \tag{2}
\end{equation*}
$$

(What is being used here is that the change in a real-valued function on an interval is at most the width of the interval times the maximal value of the absolute value of the derivative. The
derivative of $1 / x^{1 / 3}$ is $-(1 / 3) / x^{4 / 3}$, and the absolute value of this derivative takes its biggest value on the interval $[n, n+2]$ at the left-hand endpoint.)

In view of equation (1), the expression

$$
\left|\frac{\exp (2 \pi i n / 3)}{n^{1 / 3}}+\frac{\exp (2 \pi i(n+1) / 3)}{(n+1)^{1 / 3}}+\frac{\exp (2 \pi i(n+2) / 3)}{(n+2)^{1 / 3}}\right|
$$

can be rewritten, by adding and subtracting

$$
\frac{\exp (2 \pi i(n+1) / 3)}{n^{1 / 3}}+\frac{\exp (2 \pi i(n+2) / 3)}{n^{1 / 3}},
$$

as

$$
\left|\left(\frac{1}{(n+1)^{1 / 3}}-\frac{1}{n^{1 / 3}}\right) \exp (2 \pi i(n+1) / 3)+\left(\frac{1}{(n+2)^{1 / 3}}-\frac{1}{n^{1 / 3}}\right) \exp (2 \pi i(n+2) / 3)\right| .
$$

By the triangle inequality and property (2), this expression is bounded above by $1 / n^{4 / 3}$.
To demonstrate convergence of $\sum_{n=1}^{\infty} \frac{\exp (2 \pi i n / 3)}{n^{1 / 3}}$, it suffices to show that expressions of the form

$$
\begin{equation*}
\left|\sum_{n=j}^{k} \frac{\exp (2 \pi i n / 3)}{n^{1 / 3}}\right| \tag{3}
\end{equation*}
$$

get arbitrarily close to 0 when j and k get large. If necessary, add one or two terms to the end of the sum to guarantee that the number of terms is a multiple of 3 ; the error thereby introduced has modulus less than $2 / k^{1 / 3}$. The estimate on groups of three terms derived above shows that

$$
\begin{equation*}
\left|\sum_{n=j}^{k} \frac{\exp (2 \pi i n / 3)}{n^{1 / 3}}\right|<\frac{2}{k^{1 / 3}}+\sum_{n=j}^{\infty} \frac{1}{n^{4 / 3}} \tag{4}
\end{equation*}
$$

Since $\sum_{n=1}^{\infty} 1 / n^{4 / 3}$ is a convergent series, both terms on the right-hand side of (4) do indeed get close to 0 when j and k get large. That deduction completes the argument.

