Theory of Functions of a Complex Variable I

Instructions Solve six of the following seven problems. Please write your solutions on your own paper.

These problems should be treated as essay questions. A problem that says "determine" or "give an example" requires a supporting explanation. Please explain your reasoning in complete sentences.

1. a) Define what it means for a function to be complex-differentiable at a point in \mathbb{C}.
b) Give an example of a function that is real-differentiable at every point in \mathbb{C} but complex-differentiable at no point in \mathbb{C}.
2. a) Prove that if z_{1} and z_{2} are complex numbers, then

$$
\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}-z_{2}\right|
$$

b) When does equality hold in this version of the triangle inequality?
3. a) Show that if $u(x, y)=2 x-x^{3}+3 x y^{2}$, then u is a harmonic function on the plane \mathbb{R}^{2}.
b) Find an analytic function f such that $\operatorname{Re} f(z)=u(x, y)$. (As usual, $z=x+i y$.)
4. Determine the image of the vertical strip $\{z \in \mathbb{C}: 0<\operatorname{Re} z<1\}$ under the exponential function $\exp (z)$.
5. Suppose $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence of complex numbers such that the series $\sum_{n=0}^{\infty}\left|a_{n}\right|$ converges, but the series $\sum_{n=0}^{\infty} n\left|a_{n}\right|$ diverges. Prove that the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is equal to 1 .
6. Evaluate the integral $\int_{\gamma} \frac{\sin (z)}{z^{4}} d z$, where the integration path γ is the unit circle $C(0,1)$ oriented in the usual counterclockwise direction.
7. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a simple, closed curve whose trace (that is, image) does not contain the point 0 . In less formal language, the point 0 is either inside γ or outside γ but is not on γ. A student proposes the following calculation using integration by parts:

$$
\int_{\gamma} \frac{e^{z}}{z} d z=\int_{\gamma} \frac{1}{z} d\left(e^{z}\right)=\left.\frac{1}{z} e^{z}\right|_{\gamma}-\int_{\gamma} e^{z} d\left(\frac{1}{z}\right)=0-\int_{\gamma} e^{z}\left(-\frac{1}{z^{2}}\right) d z=\int_{\gamma} \frac{e^{z}}{z^{2}} d z
$$

Is the calculation valid? Discuss.

