Theory of Functions of a Complex Variable I

Instructions Solve six of the following seven problems. Please write your solutions on your own paper.

These problems should be treated as essay questions. A problem that says "determine" or that asks a question requires an explanation to support the answer. Please explain your reasoning in complete sentences.

1. Suppose that a and b are positive real numbers, and $\gamma(t)=a \cos (t)+i b \sin (t)$, where $0 \leq t \leq 2 \pi$. (The path γ is an ellipse.) Show that

$$
\int_{0}^{2 \pi} \frac{1}{a^{2} \cos ^{2}(t)+b^{2} \sin ^{2}(t)} d t=\frac{2 \pi}{a b}
$$

by evaluating the path integral $\int_{\gamma}(1 / z) d z$ in two different ways: by applying Cauchy's integral formula and by using the explicit parametrization of γ.
2. If f and g are two entire functions such that $e^{f(z)}=e^{g(z)}$ for all z, then what can you deduce about the relationship between the functions f and g ?
3. Determine the maximum value of $\operatorname{Re}\left(z^{3}\right)$ when z lies in the unit square $[0,1] \times[0,1]$.
4. Prove that if f is an entire function such that $|f(z)|>1$ for all z, then f must be a constant function.
5. Suppose f is analytic in the disk where $|z|<10$, the modulus $|f(z)|$ is bounded above by 28 for all z in this disk, and $f(0)=0$. How large can $|f(5)|$ be?
6. Show that there does not exist an analytic function f in the disk $D(0,2)$ such that

$$
f(1 / n)=(-1)^{n} / n \quad \text { for every natural number } n
$$

7. Suppose f is a nonconstant analytic function in the unit disk $D(0,1)$, not necessarily one-to-one, and the image of f is a region Ω. Must Ω be a simply connected region?
