Theory of Functions of a Complex Variable I

Instructions Solve six of the following seven problems. Please write your solutions on your own paper.

These problems should be treated as essay questions. A problem that says "find" or that asks a question requires an explanation to support the answer. Please explain your reasoning in complete sentences.

1. Find the first two nonzero terms of the Laurent series of $\frac{1}{z^{2}\left(e^{z}-e^{-z}\right)}$ that is valid in the punctured disk where $0<|z|<\pi$.
2. Classify each isolated singularity of the function $\frac{1}{z^{2}(z+1)}+\sin \left(\frac{1}{z}\right)$: is the singularity removable? essential? a pole?
3. Use the residue theorem to prove that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}(\sin \theta)^{2 n} d \theta=\frac{(2 n)!}{\left(n!2^{n}\right)^{2}}
$$

when n is a natural number.
4. Suppose that f is analytic in an open neighborhood of the closed unit disk $\bar{D}(0,1)$, and $|f(z)|<1$ when $|z| \leq 1$. Brouwer's fixed-point theorem from topology implies that f has at least one fixed point in the closed unit disk (that is, there exists a point z_{0} such that $f\left(z_{0}\right)=z_{0}$). Use Rouché's theorem to show that in this special setting, the function f has exactly one fixed point in the closed unit disk.
5. Suppose that f and g are analytic in an open neighborhood of the closed unit disk $\bar{D}(0,1)$, and f has no zeroes on the unit circle $C(0,1)$. Let the distinct zeroes of f in $D(0,1)$ be a_{1}, \ldots, a_{n}, and suppose that each of these zeroes is simple (that is, first order). Prove that

$$
\frac{1}{2 \pi i} \int_{C(0,1)} \frac{f^{\prime}(z)}{f(z)} g(z) d z=\sum_{j=1}^{n} g\left(a_{j}\right)
$$

6. Find a linear fractional transformation (a Möbius transformation) that fixes the points 1 and -1 and maps i to 0 .
7. Does there exist a linear fractional transformation (a Möbius transformation) that maps the open half-disk $\{z \in \mathbb{C}:|z|<1$ and $\operatorname{Im} z>0\}$ onto the open first quadrant? (See the figure below.) Explain.

