## Theory of Functions of a Complex Variable I

Instructions Solve six of the following seven problems. Please write your solutions on your own paper.

These problems should be treated as essay questions. A problem that says "determine" or that asks a question requires an explanation to support the answer. Please explain your reasoning in complete sentences.

1. Suppose that $a$ and $b$ are positive real numbers, and $\gamma(t)=a \cos (t)+i b \sin (t)$, where $0 \leq t \leq 2 \pi$. (The path $\gamma$ is an ellipse.) Show that

$$
\int_{0}^{2 \pi} \frac{1}{a^{2} \cos ^{2}(t)+b^{2} \sin ^{2}(t)} d t=\frac{2 \pi}{a b}
$$

by evaluating the path integral $\int_{\gamma}(1 / z) d z$ in two different ways: by applying Cauchy's integral formula and by using the explicit parametrization of $\gamma$.

Solution. (This problem is number 6 on page 12 in Chapter 3.)
According to Cauchy's integral theorem, the path integral $\int_{\gamma}(1 / z) d z$ equals $2 \pi i$, for the path $\gamma$ is a simple, closed curve that winds around the origin in the standard counterclockwise direction. On the other hand,

$$
\begin{aligned}
\int_{\gamma} \frac{1}{z} d z & =\int_{0}^{2 \pi} \frac{\gamma^{\prime}(t)}{\gamma(t)} d t=\int_{0}^{2 \pi} \frac{-a \sin (t)+i b \cos (t)}{a \cos (t)+i b \sin (t)} d t \\
& =\int_{0}^{2 \pi} \frac{\left(b^{2}-a^{2}\right) \sin (t) \cos (t)+i a b\left(\sin ^{2}(t)+\cos ^{2}(t)\right)}{a^{2} \cos ^{2}(t)+b^{2} \sin ^{2}(t)} d t
\end{aligned}
$$

Since $\sin ^{2}(t)+\cos ^{2}(t)=1$, taking the imaginary part of the integral shows that

$$
2 \pi=\int_{0}^{2 \pi} \frac{a b}{a^{2} \cos ^{2}(t)+b^{2} \sin ^{2}(t)} d t
$$

and the result follows by dividing both sides by $a b$.
2. If $f$ and $g$ are two entire functions such that $e^{f(z)}=e^{g(z)}$ for all $z$, then what can you deduce about the relationship between the functions $f$ and $g$ ?

Solution. Since $e^{f(z)-g(z)}=1$, there must be for each point $z$ some integer $n_{z}$ such that $f(z)-g(z)=2 \pi i n_{z}$. The analytic function $f(z)-g(z)$ is, in particular, continuous, so the integer $n_{z}$ depends continuously on $z$. But the only continuous integer-valued functions are constants. Thus there is some integer $n$, independent of $z$, such that the functions $f(z)$ and $g(z)$ differ by $2 \pi i n$.

## Theory of Functions of a Complex Variable I

3. Determine the maximum value of $\operatorname{Re}\left(z^{3}\right)$ when $z$ lies in the unit square $[0,1] \times[0,1]$.

Solution. (This problem is number 23 on page 27 in Chapter 2.)
In view of the maximum principle for harmonic functions, it suffices to find the maximum of $\operatorname{Re}\left(z^{3}\right)$ when $z$ lies on the boundary of the square. On the bottom edge of the square, the value of $z$ is a real number varying from 0 to 1 , so $z^{3}$ also varies from 0 to 1 , and the maximum of $\operatorname{Re}\left(z^{3}\right)$ equals 1 . On the right-hand edge of the square, where $z=1+i t$ and $0 \leq t \leq 1$, the real part of $z^{3}$ equals $1-3 t^{2}$, which varies from 1 to -2 ; again the maximum is 1 . On the top edge of the square, where $z=i+t$ and $0 \leq t \leq 1$, the real part of $z^{3}$ equals $-3 t+t^{3}$, which varies from 0 to -2 ; the maximum is 0 . On the left-hand edge of the square, where $z$ is purely imaginary, the values of $z^{3}$ are purely imaginary, so the real part is equal to 0 . Consequently, the maximum of $\operatorname{Re}\left(z^{3}\right)$ on the whole square is equal to 1 .
4. Prove that if $f$ is an entire function such that $|f(z)|>1$ for all $z$, then $f$ must be a constant function.

Solution. (This problem is number 13 on page 27 in Chapter 2.)
Evidently $f$ never takes the value 0 , so $1 / f$ is an entire function. Moreover, the hypothesis implies that $1 / f$ has modulus bounded above by 1 . By Liouville's theorem, the bounded entire function $1 / f$ must be constant, so $f$ must be constant too.
5. Suppose $f$ is analytic in the disk where $|z|<10$, the modulus $|f(z)|$ is bounded above by 28 for all $z$ in this disk, and $f(0)=0$. How large can $|f(5)|$ be?

Solution. Define a function $g$ as follows:

$$
g(z)=\frac{f(10 z)}{28} \quad \text { when }|z|<1
$$

Then $g$ is analytic in the unit disk, $g(0)=0$, and $|g(z)| \leq 1$ when $|z|<1$. By the Schwarz lemma, $|g(z)| \leq|z|$ when $|z|<1$. Consequently,

$$
|f(5)|=|28 g(1 / 2)| \leq 28 / 2=14
$$

The upper bound 14 cannot be improved, for this bound is attained when $f(z)=14 z / 5$.
6. Show that there does not exist an analytic function $f$ in the disk $D(0,2)$ such that

$$
f(1 / n)=(-1)^{n} / n \quad \text { for every natural number } n
$$

## Theory of Functions of a Complex Variable I

Solution. Seeking a contradiction, suppose that such a function $f$ does exist. Taking $n$ to be even shows that the function $f(z)$ and the function $z$ take the same value at the point $1 /(2 k)$ when $k$ is a natural number. This sequence of points accumulates at the center of the disk, so by the identity theorem, the function $f(z)$ must be identically equal to the function $z$. On the other hand, the function $f(z)$ matches the function $-z$ at the point $1 /(2 k+1)$ for each natural number $k$, so the identity theorem implies that $f(z)$ must be identically equal to $-z$. Contradiction.
7. Suppose $f$ is a nonconstant analytic function in the unit disk $D(0,1)$, not necessarily one-to-one, and the image of $f$ is a region $\Omega$. Must $\Omega$ be a simply connected region?

Solution. If $f$ is not one-to-one, then the image region $\Omega$ need not be simply connected. For example, suppose $f(z)=\exp (8 i z)$. Then the restriction of $f$ to the interval $[0, \pi / 4]$ of the real axis defines a simple, closed curve whose trace (image) is the unit circle $C(0,1)$. But 0 is a point outside $\Omega$ (since the exponential function never takes the value 0 ). Thus the region $\Omega$ contains a closed path that has nonzero winding number around a certain point outside $\Omega$, so $\Omega$ is not simply connected.

