1. State some theorem (from this course) to which the name of Augustin-Louis Cauchy is attached.
2. Give a geometric description of the set of points z in \mathbb{C} for which

$$
z^{2}+4 z \bar{z}+(\bar{z})^{2}=6
$$

3. The complex function $\tan (z)$ is defined to be the quotient $\frac{\sin (z)}{\cos (z)}$. Show that there is no complex number z for which $\tan (z)$ is equal to i.
4. Suppose the power series $\sum_{n=1}^{\infty} a_{n} z^{n}$ has radius of convergence equal to 6 , and the power series $\sum_{n=1}^{\infty} b_{n} z^{n}$ has radius of convergence equal to 7 . What, if anything, can be said about the radius of convergence of the power series $\sum_{n=1}^{\infty} a_{n} b_{n} z^{n}$?
5. Suppose f is an analytic function (on some open subset of \mathbb{C}) with real part u and imaginary part v. Show that ∇u and ∇v are orthogonal vectors. The notation ∇u means $\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)$, the gradient vector of u.
6. Show that

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=\frac{\pi}{3} .
$$

Bonus

Who is the French mathematician shown in the picture below?

(1789-1857)

