Examination 2

Instructions: Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. Give an example of a closed curve γ such that the integrals $\int_{\gamma} \frac{8}{z-11} d z$ and $\int_{\gamma} \frac{11}{z-8} d z$
are well defined, equal, and nonzero.
2. Suppose G is a simply connected open set, and f is an analytic function on G without zeros. You know a theorem stating that there exists a logarithm of f, that is, an analytic function g such that $e^{g(z)}=f(z)$ when $z \in G$.
(a) If f is injective, must g be injective?
(b) If g is injective, must f be injective?

Explain your reasoning.
3. How many zeros does the function $z^{2018}+11 z^{8}+e^{z}$ have in the annulus where $1<|z|<2$?

Explain how you know.
(As usual, zeros are to be counted according to multiplicity.)
4. In some disk with center $11+8 i$, the function $\frac{1}{\cos (z)}$ can be represented by a Taylor series $\sum_{n=0}^{\infty} c_{n}(z-11-8 i)^{n}$. You know a theorem guaranteeing the existence of a radius R such that this series converges when $|z-11-8 i|<R$ and diverges when $|z-11-8 i|>R$. Determine the greatest integer less than or equal to R.
5. Prove there is no analytic function f on the disk $\{z \in \mathbb{C}:|z|<2018\}$ such that

$$
f(1 / n)= \begin{cases}1 / n^{8}, & \text { when } n \text { is an even natural number } \\ 1 / n^{11}, & \text { when } n \text { is an odd natural number. }\end{cases}
$$

6. (a) A student makes an error by claiming that if f is an analytic function on a connected open set G, then $\int_{\gamma} f(z) d z=0$ for every simple closed smooth curve γ in G. Show that the claim is false by giving a counterexample. (You get to choose G and f and γ.)
(b) The student makes more error by claiming that if g is a continuous function on a connected open set G, and if there exists a simple closed smooth curve γ in G for which $\int_{\gamma} g(z) d z=0$, then g is analytic on G. Show that this claim is false too by giving a counterexample.
