
Math 617 Examination 2
Theory of Functions of a Complex Variable I

Fall 2012

Instructions Please solve six of the following seven problems. Treat these problems as essay
questions: supporting explanation is required.

1. When R is a real number greater than 1, let CR denote the triangle (oriented counterclock-
wise) with vertices �R, R, and iR. Does the limit
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2. Let D denote the unit disk, f ´ 2 C W j´j < 1 g. If f W D ! D is a holomorphic function,
then how big can jf 00.0/j be?

3. Riemann’s famous zeta function can be defined as follows:
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when Re ´ > 1.

(Recall that n´ means expf´ ln.n/g when n is a positive integer.) Notice that this infinite
series is not a power series. Does this infinite series converge uniformly on each compact
subset of the open half-plane f ´ 2 C W Re ´ > 1 g?

4. In what region of the complex plane does the integralZ 1

0

1
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dt

represent a holomorphic function of ´? (The formula is to be understood as an integral in
which the real variable t moves along the real axis from 0 to 1.)

5. In what region of the complex plane does the infinite series
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represent a holomorphic function of ´?

6. There cannot exist an entire function f with the property that
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for every positive integer n:

Why not?

7. Prove the following property of the gamma function:ˇ̌̌
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when t 2 R:

Hint: Recall that � .´/� .1 � ´/ D �= sin.�´/, and cosh.´/ D 1
2
.e´ C e�´/.
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