Theory of Functions of a Complex Variable I

Instructions Please solve six of the following seven problems. Treat these problems as essay questions: supporting explanation is required.

1. When R is a real number greater than 1 , let C_{R} denote the triangle (oriented counterclockwise) with vertices $-R, R$, and $i R$. Does the limit

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{1}{1+z^{2}} \mathrm{~d} z \quad \text { exist? }
$$

2. Let D denote the unit disk, $\{z \in \mathbb{C}:|z|<1\}$. If $f: D \rightarrow D$ is a holomorphic function, then how big can $\left|f^{\prime \prime}(0)\right|$ be?
3. Riemann's famous zeta function can be defined as follows:

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}} \quad \text { when } \operatorname{Re} z>1
$$

(Recall that n^{z} means $\exp \{z \ln (n)\}$ when n is a positive integer.) Notice that this infinite series is not a power series. Does this infinite series converge uniformly on each compact subset of the open half-plane $\{z \in \mathbb{C}: \operatorname{Re} z>1\}$?
4. In what region of the complex plane does the integral

$$
\int_{0}^{1} \frac{1}{(1-z t)^{2}} \mathrm{~d} t
$$

represent a holomorphic function of z ? (The formula is to be understood as an integral in which the real variable t moves along the real axis from 0 to 1.)
5. In what region of the complex plane does the infinite series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{z^{n}}+\frac{z^{n}}{2^{n}}\right)
$$

represent a holomorphic function of z ?
6. There cannot exist an entire function f with the property that

$$
f\left(\frac{1}{n}\right)=\frac{(-1)^{n}}{n^{2}} \quad \text { for every positive integer } n
$$

Why not?
7. Prove the following property of the gamma function:

$$
\left|\Gamma\left(\frac{1}{2}+i t\right)\right|^{2}=\frac{\pi}{\cosh (\pi t)} \quad \text { when } t \in \mathbb{R}
$$

Hint: Recall that $\Gamma(z) \Gamma(1-z)=\pi / \sin (\pi z)$, and $\cosh (z)=\frac{1}{2}\left(e^{z}+e^{-z}\right)$.

