1. State the following theorems: Liouville's theorem about entire functions, Morera's theorem, and the Casorati-Weierstrass theorem.
2. Give an example of an open set, an analytic function $f$ defined on the set, and two paths $\gamma_{1}$ and $\gamma_{2}$ in the set having the same endpoints [in other words, $\gamma_{1}(0)=\gamma_{2}(0)$ and $\left.\gamma_{1}(1)=\gamma_{2}(1)\right]$ such that $\int_{\gamma_{1}} f(z) d z \neq \int_{\gamma_{2}} f(z) d z$.
3. Determine (with proof) the maximum value and the minimum value of the real-valued expression $\left|z^{2}-1\right|$ when $|z| \leq 1$.
4. Suppose $f$ is analytic in $\{z \in \mathbb{C}: 0<|z|<1\}$, the punctured unit disk. If $f$ has a removable singularity at the origin, then what can you say about the singularity of $1 / f$, the reciprocal function?
5. Does there exist an entire function $f$ such that $f(n)=n \cdot(-1)^{n}$ for every natural number $n$ ?
6. Determine the residue of the rational function $\frac{1}{\left(z^{2}-1\right)^{5}}$ at the point where $z=1$.
