Final Examination

Instructions: Write solutions to any **six** of the following seven problems. If you attempt all seven problems, please indicate which six you want graded.

- 1. State
 - (a) Cauchy's formula for the radius of convergence of a power series,
 - (b) some version of Cauchy's integral formula, and
 - (c) some theorem (from this course) *not* named after Cauchy.
- 2. Consider the following complex numbers: (a) $(1 + i)^{2018}$ (b) $(\sqrt{3} + i)^{12}$ (c) the principal value of 12^i .

Which of these three complex numbers has the largest real part? Explain how you know.

3. Suppose $\gamma : [0,1] \to \mathbb{C}$ is the unit circle, that is, $\gamma(t) = e^{2\pi i t}$. Give an example of an analytic function f on $\mathbb{C} \setminus \{0\}$ such that

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = 12$$
 and $\frac{1}{2\pi i} \int_{\gamma} (f(z))^2 dz = 2018.$

- 4. Determine the value of $\sup \left\{ \left| \frac{\sin(z)}{z} \right| : z \in \mathbb{C} \text{ and } 0 < |z| < 1 \right\}.$
- 5. According to the "method of partial fractions," there exist constants $A_1, A_2, \ldots, A_{2018}$ such that

$$\frac{z^{12}}{(z-1)(z-2)\cdots(z-2018)} = \frac{A_1}{z-1} + \frac{A_2}{z-2} + \cdots + \frac{A_{2018}}{z-2018}.$$

The coefficient A_n is simply the residue of the left-hand side at the simple pole *n*. Prove that $A_1 + A_2 + \cdots + A_{2018} = 0$.

- 6. Suppose f is an entire function having the property that $f(z^{12}) = (f(z))^{2018}$ for every z. Prove that f must be a constant function.
- 7. A student analyzes the real integral $\int_0^\infty e^{-x^4} dx$ as follows. "Make the change of variable x = it. Then $x^4 = t^4$ and dx = i dt. When x goes from 0 to ∞ , so does t, whence

$$\int_0^\infty e^{-x^4} \, dx = i \int_0^\infty e^{-t^4} \, dt.$$

The name of the dummy integration variable does not matter, so $\int_0^\infty e^{-x^4} dx$ equals *i* times itself, hence equals 0. But WolframAlpha says that $\int_0^\infty e^{-x^4} dx = \Gamma(5/4) \approx 0.906$. Did I just show that mathematics is inconsistent?" Restore the student's sanity for the holidays by explaining the flaw in the reasoning.