Theory of Functions of a Complex Variable I

Instructions Please solve the following six problems (all of which are exercises excerpted from the textbook). Treat these problems as essay questions: supporting explanation is required.

1. Find every complex number z satisfying the property that $|z-i|=2 z+i$.
2. Let ω denote $e^{2 \pi i / 3}$, a cube root of 1 . Let $g(z)$ denote the product

$$
\cos (z) \cos (\omega z) \cos \left(\omega^{2} z\right)
$$

Show that when n is not a multiple of 3 , the nth coefficient in the Maclaurin series of g is equal to zero. In other words, there exists an entire function f such that $g(z)=f\left(z^{3}\right)$ for every z.
3. Let C be the circle with center 1 and radius 1 (oriented in the usual counterclockwise direction and traversed once). Evaluate the line integral

$$
\int_{C} \frac{1+z}{1-z} \mathrm{~d} z
$$

4. Suppose f is an entire function such that

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| \mathrm{d} \theta
$$

is a bounded function of the radius r. Show that f must be a constant function. (This problem is a variation on Liouville's theorem.)
5. Use the residue theorem to prove that

$$
\int_{0}^{\infty} \frac{1}{x^{4}+6 x^{2}+8} \mathrm{~d} x=\frac{\pi(\sqrt{2}-1)}{8}
$$

6. Determine the number of zeroes of the function $2 i z^{2}+\sin (z)$ in the rectangle where $|\operatorname{Re}(z)| \leq \pi / 2$ and $|\operatorname{Im} z| \leq 1$.
(You may find it useful to know that $\cosh (1)<1.6$.)

Optional bonus problem for extra credit

Let D denote $\mathbb{C} \backslash[-1,1]$, the complex plane with the closed segment $[-1,1]$ of the real axis removed. Is it possible to define a holomorphic branch of $\sqrt{z^{2}-1}$ on D ? In other words, does there exist a holomorphic function f on D with the property that $(f(z))^{2}=z^{2}-1$ for every z in D ? Explain why or why not.

