Recap

- The complex numbers are a field, but not an ordered field.
- The fundamental theorem of algebra says that the field \mathbb{C} is algebraically closed.
- The complex numbers form a metric space, the standard Euclidean distance $d(z, w)$ being $|z-w|$.

Exercise on limits

Discuss the following limits.

1. $\lim _{z \rightarrow i} z^{n} \quad($ where $n \in \mathbb{N})$
2. $\lim _{n \rightarrow \infty} z^{n} \quad($ where $z \in \mathbb{C})$

Answer to exercise

1. $\lim _{z \rightarrow i} z^{n}= \begin{cases}1, & \text { if } n \equiv 0 \bmod 4 \\ i, & \text { if } n \equiv 1 \bmod 4 \\ -1, & \text { if } n \equiv 2 \bmod 4 \\ -i, & \text { if } n \equiv 3 \bmod 4\end{cases}$
2. $\lim _{n \rightarrow \infty} z^{n}= \begin{cases}0, & \text { if }|z|<1 \\ 1, & \text { if } z=1 \\ \text { does not exist, } & \text { if }|z|=1 \text { but } z \neq 1 \\ \infty, & \text { if }|z|>1\end{cases}$

Reminders on limit proofs

To prove in detail that $\lim _{z \rightarrow i} z^{n}=i^{n}$, what needs to be shown is that for every positive ε, there exists a positive δ with the following property: if $|z-i|<\delta$, then $\left|z^{n}-i^{n}\right|<\varepsilon$.

To execute the proof, observe that

$$
z^{n}-i^{n}=(z-i)\left(z^{n-1}+z^{n-2} i+\cdots+z i^{n-2}+i^{n-1}\right)
$$

so the triangle inequality implies that if $|z| \leq 2$, then

$$
\left|z^{n}-i^{n}\right| \leq|z-i|\left(2^{n-1}+2^{n-2}+\cdots+1\right) \leq|z-i| 2^{n} .
$$

Therefore, if $\delta=\min \left(1, \varepsilon / 2^{n}\right)$, then the required property holds: namely, if $|z-i|<\delta$, then $\left|z^{n}-i^{n}\right|<\varepsilon$.

\mathbb{C}_{∞} and stereographic projection

Assignment due next class

- Read the rest of Chapter I.
- For the tangent-sphere model of stereographic projection, show that the spherical distance between complex numbers z and w equals $\frac{|z-w|}{\sqrt{1+|z|^{2}} \sqrt{1+|w|^{2}}}$.

Hint: To minimize computation, show that triangles $N P Q$ and $N w z$ are similar.

