Limits of functions

Suppose S is a subset of \mathbb{C} , and $f: S \to \mathbb{C}$ is a function, and p is a limit of a sequence of points of the set S. The statement " $\lim_{z\to p} f(z) = c$ " means either of the following equivalent properties.

- 1. For every positive ε there exists a positive δ such that $|f(z) c| < \varepsilon$ whenever $z \in S$ and $0 < |z p| < \delta$.
- 2. Whenever $\{z_n\}_{n=1}^{\infty}$ is a sequence of points of $S \setminus \{p\}$ that converges to p, the image sequence $\{f(z_n)\}_{n=1}^{\infty}$ converges to c.

Exercise

How should these properties be rephrased

(a) when
$$p = \infty$$
?
(b) when $c = \infty$?
(c) when $p = \infty$ and $c = \infty$?

Continuous functions

Suppose S is a subset of \mathbb{C} , and $f: S \to \mathbb{C}$ is a function, and p is a point of the set S. The statement "f is continuous at p" means any one of the following equivalent properties.

- 1. For every positive ε there exists a positive δ such that $|f(z) f(p)| < \varepsilon$ whenever $z \in S$ and $|z p| < \delta$.
- 2. Whenever $\{z_n\}_{n=1}^{\infty}$ is a sequence of points of S that converges to p, the image sequence $\{f(z_n)\}_{n=1}^{\infty}$ converges to f(p).
- Whenever B is a disk centered at f(p), the inverse image f⁻¹(B) contains the intersection of S with a disk centered at p.

The statement "f is continuous on S" means that f is continuous at p for every point p in S.

Exercise (not to hand in)

Convince yourself that you can prove that continuity is preserved by forming

- 1. sums of functions
- 2. products of functions
- 3. compositions of functions

Derivatives

Suppose G is an open subset of \mathbb{C} , and $f: G \to \mathbb{C}$ is a function, and p is a point of the set G. The statement "f is (complex) differentiable at p" means any one of the following equivalent properties.

1.
$$\lim_{z \to p} \frac{f(z) - f(p)}{z - p}$$
 exists (as a complex number, not ∞).

2. There exists a complex-linear function $\ell\colon \mathbb{C}\to \mathbb{C}$ such that

$$\lim_{z\to p}\frac{f(z)-f(p)-\ell(z-p)}{z-p}=0.$$

3. There exists a function $\tilde{f}: G \to \mathbb{C}$, continuous at p, such that $f(z) - f(p) = \tilde{f}(z)(z - p)$.

The *derivative* f'(p) means the value of the limit in property 1, and $\ell(z)/z$ in property 2, and $\tilde{f}(p)$ in property 3.

Assignment due next class