## Limits of functions

Suppose $S$ is a subset of $\mathbb{C}$, and $f: S \rightarrow \mathbb{C}$ is a function, and $p$ is a limit of a sequence of points of the set $S$. The statement
" $\lim _{z \rightarrow p} f(z)=c$ " means either of the following equivalent properties.

1. For every positive $\varepsilon$ there exists a positive $\delta$ such that $|f(z)-c|<\varepsilon$ whenever $z \in S$ and $0<|z-p|<\delta$.
2. Whenever $\left\{z_{n}\right\}_{n=1}^{\infty}$ is a sequence of points of $S \backslash\{p\}$ that converges to $p$, the image sequence $\left\{f\left(z_{n}\right)\right\}_{n=1}^{\infty}$ converges to $c$.

## Exercise

How should these properties be rephrased
(a) when $p=\infty$ ?
(b) when $c=\infty$ ?
(c) when $p=\infty$ and $c=\infty$ ?

## Continuous functions

Suppose $S$ is a subset of $\mathbb{C}$, and $f: S \rightarrow \mathbb{C}$ is a function, and $p$ is a point of the set $S$. The statement " $f$ is continuous at $p$ " means any one of the following equivalent properties.

1. For every positive $\varepsilon$ there exists a positive $\delta$ such that $|f(z)-f(p)|<\varepsilon$ whenever $z \in S$ and $|z-p|<\delta$.
2. Whenever $\left\{z_{n}\right\}_{n=1}^{\infty}$ is a sequence of points of $S$ that converges to $p$, the image sequence $\left\{f\left(z_{n}\right)\right\}_{n=1}^{\infty}$ converges to $f(p)$.
3. Whenever $B$ is a disk centered at $f(p)$, the inverse image $f^{-1}(B)$ contains the intersection of $S$ with a disk centered at $p$.

The statement " $f$ is continuous on $S$ " means that $f$ is continuous at $p$ for every point $p$ in $S$.

## Exercise (not to hand in)

Convince yourself that you can prove that continuity is preserved by forming

1. sums of functions
2. products of functions
3. compositions of functions

## Derivatives

Suppose $G$ is an open subset of $\mathbb{C}$, and $f: G \rightarrow \mathbb{C}$ is a function, and $p$ is a point of the set $G$. The statement " $f$ is (complex) differentiable at $p$ " means any one of the following equivalent properties.

1. $\lim _{z \rightarrow p} \frac{f(z)-f(p)}{z-p}$ exists (as a complex number, not $\infty$ ).
2. There exists a complex-linear function $\ell: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
\lim _{z \rightarrow p} \frac{f(z)-f(p)-\ell(z-p)}{z-p}=0
$$

3. There exists a function $\widetilde{f}: G \rightarrow \mathbb{C}$, continuous at $p$, such that $f(z)-f(p)=\widetilde{f}(z)(z-p)$.
The derivative $f^{\prime}(p)$ means the value of the limit in property 1 , and $\ell(z) / z$ in property 2 , and $\widetilde{f}(p)$ in property 3 .

## Assignment due next class

- Show that a real-linear transformation of $\mathbb{R}^{2}$, represented by a real matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, corresponds to a complex-linear transformation of $\mathbb{C}$ if and only if $a=d$ and $b=-c$.

