Recap: The complex derivative

Suppose G is an open subset of \mathbb{C}, and $f: G \rightarrow \mathbb{C}$ is a function, and p is a point of the set G. The statement " f is (complex) differentiable at p " means any one of the following equivalent properties.

1. $\lim _{z \rightarrow p} \frac{f(z)-f(p)}{z-p}$ exists (as a complex number, not ∞).
2. There exists a complex-linear function $\ell: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
\lim _{z \rightarrow p} \frac{f(z)-f(p)-\ell(z-p)}{z-p}=0
$$

3. There exists a function $\widetilde{f}: G \rightarrow \mathbb{C}$, continuous at p, such that $f(z)-f(p)=\widetilde{f}(z)(z-p)$.
The derivative $f^{\prime}(p)$ means the value of the limit in property 1 , and $\ell(z) / z$ in property 2 , and $\widetilde{f}(p)$ in property 3 .

Examples

1. If $G=\mathbb{C}$, and $n \in \mathbb{N}$, and $f(z)=z^{n}$, then f is differentiable at every point, and $f^{\prime}(p)=n p^{n-1}$ for every p. Indeed

$$
\begin{aligned}
& \lim _{z \rightarrow p} \frac{f(z)-f(p)}{z-p}=\lim _{z \rightarrow p} \frac{z^{n}-p^{n}}{z-p} \\
& \quad=\lim _{z \rightarrow p}\left(z^{n-1}+z^{n-2} p+\cdots+z p^{n-2}+p^{n-1}\right)=n p^{n-1}
\end{aligned}
$$

2. If $f(z)=\bar{z}$ (complex conjugate), then f is (complex) differentiable at no point. Indeed,

$$
\lim _{z \rightarrow p} \frac{f(z)-f(p)}{z-p}=\lim _{z \rightarrow p} \frac{\bar{z}-\bar{p}}{z-p}
$$

When $z \rightarrow p$ horizontally, the limit equals 1 , but when $z \rightarrow p$ vertically, the limit equals -1 . So the limit does not exist.

Terminology

Differentiability is a property that takes place at a point.
A function that is (complex) differentiable at every point of an open set G is called analytic on G or holomorphic on G. (Cauchy's own terminology of "synectic functions" and "monogenic functions" is obsolete.)

When a set S is not open, "analytic on S " means "analytic on some (unspecified) open set containing S."

Reminder on real differentiability in \mathbb{R}^{2}

Express $f(z)$ as $u(x, y)+i v(x, y)$, where $z=x+y i$.
Viewed in this way as a function on \mathbb{R}^{2}, the function f is differentiable in the real sense at a point (a, b) if there exists a linear transformation T of \mathbb{R}^{2} such that

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{\binom{u(x, y)}{v(x, y)}-\binom{u(a, b)}{v(a, b)}-T\binom{x-a}{y-b}}{|x-a|+|y-b|}=0
$$

The transformation T is represented by the Jacobian matrix

$$
\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right) \quad \text { evaluated at the point }(a, b)
$$

Real differentiability versus complex differentiability

If $f(z)=u(x, y)+i v(x, y)$, and f is real differentiable, then f is complex differentiable iff the real Jacobian matrix corresponds to a complex-linear transformation.

By a homework exercise, this property means that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \quad \text { (note the sign) }
$$

the so-called Cauchy-Riemann equations.

Some theorems about the Cauchy-Riemann equations

Suppose G is an open subset of \mathbb{C}, and $f: G \rightarrow \mathbb{C}$ is a function, and $f(z)=u(x, y)+i v(x, y)$, where $z=x+y i$.

1. If u and v have continuous first-order partial derivatives, then f is analytic on G iff the Cauchy-Riemann equations hold on G. [Theorem 2.29 in Chapter III]
2. If f is analytic, then u and v do have continuous partial derivatives [see Corollary 2.12 in Chapter IV], and the Cauchy-Riemann equations hold.
3.
4.

Assignment due next class

1. Suppose G is the punctured plane $\mathbb{C} \backslash\{0\}$, and $f(z)=1 / z$. Show in two ways that f is analytic on G :
(a) Apply one of the definitions of the derivative to show that $f^{\prime}(z)$ exists and equals $-1 / z^{2}$ when $z \neq 0$.
(b) Express $f(z)$ in the form $u(x, y)+i v(x, y)$ and verify the Cauchy-Riemann equations.
2. Show that if $f(z)=|z|^{2}$, then f is analytic on no open subset of \mathbb{C}. (This problem is a reinterpretation of Exercise 1 in $\S 2$ of Chapter III.)
