Recap: Cauchy-Riemann equations

When G is an open subset of \mathbb{C}, and $f: G \rightarrow \mathbb{C}$ is a function expressed as $u(x, y)+i v(x, y)$, the Cauchy-Riemann equations say that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Some theorems about the Cauchy-Riemann equations

Suppose G is an open subset of \mathbb{C}, and $f: G \rightarrow \mathbb{C}$ is a function, and $f(z)=u(x, y)+i v(x, y)$, where $z=x+y i$.

1. If u and v have continuous first-order (real) partial derivatives, then f is analytic on G iff the Cauchy-Riemann equations hold on G. [Theorem 2.29 in Chapter III]
2. If f is analytic, then u and v do have continuous real partial derivatives [see Corollary 2.12 in Chapter IV], and the Cauchy-Riemann equations do hold.
3. If f is continuous, and the first-order partial derivatives of u and v exist (not necessarily continuous) and satisfy the Cauchy-Riemann equations in G, then f is analytic on G. [Looman-Menshov theorem, not in the book]
4. If f is continuous, and the Cauchy-Riemann equations hold in the sense of distributions (generalized functions), then f is analytic. [not in the book; standard knowledge in PDE]

A deduction about the range of an analytic function

Suppose G is a nonvoid connected open set, and $f: G \rightarrow \mathbb{C}$ is an analytic function. If the range of f is a subset of \mathbb{R}, then f must be a constant function. [Exercise 14 in $\S 2$ of Chapter III] Why?

Write f as $u+i v$. The hypothesis says that v is the zero function. The Cauchy-Riemann equations then imply that $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ are identically equal to zero. Therefore u is constant along horizontal lines and also is constant along vertical lines. So u is a constant function. Hence f is a constant function.
[A coming attraction: Theorem 7.5 in Chapter IV says much more.]

Some notation of Wilhelm Wirtinger (1865-1945)

$$
\frac{\partial f}{\partial z}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right) \quad \text { and } \quad \frac{\partial f}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)
$$

If f is analytic, then the Cauchy-Riemann equations imply that $\frac{\partial f}{\partial z}=\frac{\partial f}{\partial x}=-i \frac{\partial f}{\partial y}=f^{\prime}$ and $\frac{\partial f}{\partial \bar{z}}=0$.

The simplest version of Cauchy's integral theorem

For f analytic on a closed rectangle,

$$
\begin{aligned}
0 & =\iint_{R} i\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) d x d y \quad \text { (by the Cauchy-Riemann equations) } \\
& =\int_{c}^{d}[f(b, y)-f(a, y)] i d y+\int_{a}^{b}[f(x, c)-f(x, d)] d x \\
& =\int_{\partial R} f(z) d z
\end{aligned}
$$

[A coming attraction: Theorem 6.6 in Chapter IV says much more.]

Assignment due next class

Suppose G is an open subset of \mathbb{C}, and $f: G \rightarrow \mathbb{C}$ is an analytic function, expressed as $u(x, y)+i v(x, y)$.

1. Show that the determinant of the Jacobian matrix

$$
\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)
$$

at a point z in G is equal to $\left|f^{\prime}(z)\right|^{2}$.
2. Let G^{*} denote the reflection of G across the real axis: namely, $G^{*}=\{z \in \mathbb{C}: \bar{z} \in G\}$. Define a function $f^{*}: G^{*} \rightarrow \mathbb{C}$ by setting $f^{*}(z)$ equal to $\overline{f(\bar{z})}$. Show that f^{*} is an analytic function on the set G^{*}.
[This problem is Exercise 19 in $\S 2$ of Chapter III.]

