## Methods for constructing analytic functions

- Infinite series. Example: $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$
- Infinite products. Example: $\sin (\pi z)=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)$
- Integrals. Example: $\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t, \operatorname{Re}(z)>0$ (Gamma function)
- Differential equations. Example: $J_{1}(z)$ is a solution of the equation $z^{2} \frac{d^{2} J_{1}}{d z^{2}}+z \frac{d J_{1}}{d z}+\left(z^{2}-1\right) J_{1}=0$
(Bessel function of order 1)


## Existence of the radius of convergence

Theorem
There are three possibilities for a power series $\sum_{n=0}^{\infty} c_{n} z^{n}$.

1. The series converges only when $z=0$.
2. The series converges for every complex number $z$.
3. There is a positive real number $R$ such that the series converges when $|z|<R$ and diverges when $|z|>R$.

## Proof.

If $w \neq 0$, and $\sum_{n=0}^{\infty} c_{n} w^{n}$ converges, then the numbers $\left|c_{n} w^{n}\right|$ must be bounded. Now $\left|c_{n} z^{n}\right|=\left|c_{n} w^{n}\right||z / w|^{n} \leq($ constant $)|z / w|^{n}$, so if $|z|<|w|$, then $\sum_{n=0}^{\infty} c_{n} z^{n}$ converges (absolutely) by comparison with the geometric series $\sum_{n=0}^{\infty}|z / w|^{n}$. So $\sum_{n=0}^{\infty} c_{n} z^{n}$ converges in a union of disks centered at the origin.

## Cauchy's root test (1821)

Théoreme I. - Cherches la limite ou les limites vers lesquelles converge, tandis que $n$ crô̂t indéfiniment, l'expression $\left(u_{n}\right)^{\frac{1}{n}}$, et désignes par $k$ la plus grande de ces limites, ou, en d'autres termes, la limite des plus grandes valeurs de l'expression dont il s'agil. La série (1) sera convergente si l'on a $k<1$, et divergente sil'on $a k>1$.

Theorem (English interpretation)
Suppose $u_{n}>0$ for every $n$, and let $k$ denote $\limsup u_{n}^{1 / n}$.
The series $\sum_{n} u_{n}$ converges if $k<1$ and diverges if $k>1$.

## Cauchy's formula for the radius of convergence

Let $A$ denote limsup $\left|c_{n}\right|^{1 / n}$. The radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} z^{n}$ equals

$$
\begin{cases}\infty, & \text { if } A=0 \\ 0, & \text { if } A=\infty \\ \frac{1}{A}, & \text { otherwise }\end{cases}
$$

## Proof.

Apply the root test for convergence of series, observing that $\limsup \left|c_{n} z^{n}\right|^{1 / n}=|z| \lim \sup \left|c_{n}\right|^{1 / n}$.

$$
n \rightarrow \infty
$$

$$
n \rightarrow \infty
$$

## Assignment due next class

1. Read $\S 1$ and $\S 2$ of Chapter III.
2. Solve parts (a), (b), and (d) of Exercise 6 in $\S 1$ of Chapter III (page 33).
