Some standard examples of entire functions

$$
\begin{gathered}
\exp (z)=e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\cdots \\
\cos (z)=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots \\
\sin (z)=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots
\end{gathered}
$$

By Proposition III.2.5, the derivatives are as expected from the corresponding real functions: $\frac{d}{d z} e^{z}=e^{z}$ and $\frac{d}{d z} \cos (z)=-\sin (z)$ and $\frac{d}{d z} \sin (z)=\cos (z)$.

Euler's identities

$$
\begin{aligned}
e^{i z} & =1+(i z)+\frac{(i z)^{2}}{2!}+\frac{(i z)^{3}}{3!}+\frac{(i z)^{4}}{4!}+\cdots \\
& =\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots\right)+i\left(z-\frac{z^{3}}{3!}+\cdots\right) \\
& =\cos (z)+i \sin (z)
\end{aligned}
$$

Averaging $e^{i z}$ and $\pm e^{-i z}$ shows that

$$
\cos (z)=\frac{e^{i z}+e^{-i z}}{2} \quad \text { and } \quad \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

These formulas, due to Leonhard Euler (1707-1783), are found (for z real) in his 1748 book, Introductio in analysin infinitorum.

More identities

Real-variable identities like

$$
\begin{aligned}
e^{x+y} & =e^{x} e^{y} \quad \text { and } \\
\sin (x+y) & =\sin (x) \cos (y)+\cos (x) \sin (y)
\end{aligned}
$$

continue to hold for complex arguments and can be proved in several ways:

- by direct power series manipulations,
- by using the differential equations satisfied by the functions,
- by the "principle of persistence of functional relations" (see the future Corollary IV.3.8).

Remark
The second real identity above is a corollary of the complexified version of the first identity. (Replace x and y by ix and iy and take the imaginary part.)

Warning

Properties of the real exp, sin, and cos functions that involve inequalities do not carry over to the complex functions.
For example:

- $e^{x}>0$ when x is real, but the range of the complex exponential function is $\mathbb{C} \backslash\{0\}$.
- $|\sin (x)| \leq 1$ when x is real, but $|\sin (i)|>1$, and the range of the complex sine function is all of \mathbb{C}.

Inverse functions

Since $\sin (z)$ and $\cos (z)$ are periodic with period 2π, and $\exp (z)$ is periodic with period $2 \pi i$, these functions cannot have global inverses. They do have infinitely many local inverses.

Definition III.2.18 says that a branch of the logarithm consists of

1. a choice of a suitable connected open set G, and
2. a continuous function $f: G \rightarrow \mathbb{C}$ such that $e^{f(z)}=z$ for every z in G.

The value of $f(z)$ has to be $\ln |z|+i \arg (z)$, but $\arg (z)$ is determined only up to addition of an integer multiple of 2π.

Since $\arg (z)$ has to be continuous on G, the region G cannot contain a loop that encloses the origin.

Two regions where $\arg (z)$ can be defined continuously

Assignment due next class

- Show that $\sin (z)$ is a bijection from the half-strip where $-\frac{\pi}{2}<\operatorname{Re}(z)<\frac{\pi}{2}$ and $\operatorname{Im}(z)>0$ to the half-plane where $\operatorname{Im}(w)>0$.

z plane (domain)
$\xrightarrow{\sin (z)=} w$
w plane (range)

