Interpretation of the derivative of a path

If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a smooth path, and t is a point at which $\gamma^{\prime}(t) \neq 0$, then $\gamma^{\prime}(t)$ represents the direction of the line tangent to the (image of the) path γ.

Now suppose G is an open set containing the image of γ, and $f: G \rightarrow \mathbb{C}$ is a real-differentiable function. What is the tangent vector to the image curve $f \circ \gamma$?

The real chain rule implies that

$$
(f \circ \gamma)^{\prime}(t)=\frac{\partial f}{\partial z}(\gamma(t)) \gamma^{\prime}(t)+\frac{\partial f}{\partial \bar{z}}(\gamma(t)) \overline{\gamma^{\prime}(t)}
$$

So if f is an analytic function $(\partial f / \partial \bar{z}=0)$, then the tangent vector to the image curve is the product of f^{\prime} and γ^{\prime}.

Key deduction: If f is analytic, and if $f^{\prime} \neq 0$, then the angle at which two curves cross is preserved under mapping by f.

Conformal mapping

If G is open, and $f: G \rightarrow \mathbb{C}$ is a real-differentiable mapping that preserves the angles at which curves cross (both magnitude and orientation), then f is conformal.

Equivalently, f is analytic, and the derivative f^{\prime} is never equal to 0 .

Future Theorem IV.7.4 implies that if f is analytic, then $f^{\prime}\left(z_{0}\right) \neq 0$ iff f is locally injective in a neighborhood of z_{0}.

Warning: Some authors require conformal mappings to be globally injective.
Some examples
Rotation and translation are rigid motions, hence conformal. Dilation is conformal. The inversion $z \mapsto 1 / z$ is conformal on $\mathbb{C} \backslash\{0\}$, since the derivative $-1 / z^{2}$ is never equal to 0 .

Conformal mapping example: Geometry of z^{2}

z plane (domain)

w plane (range)

Conformality fails at the origin: the derivative equals zero there.

Assignment due next class

1. Explain why every Möbius transformation $z \mapsto \frac{a z+b}{c z+d}$ (where $a d-b c \neq 0$) is conformal on its domain.
2. Show that if f is analytic on an open subset of $\mathbb{C} \backslash\{0\}$, and $z=r e^{i \theta}$, then

$$
z \frac{\partial f}{\partial z}=r \frac{\partial f}{\partial r}=-i \frac{\partial f}{\partial \theta}
$$

(a version of the Cauchy-Riemann equations in polar coordinates).

