Reminder

The first examination takes place in class on Thursday, October 4.

Please bring paper and a writing implement to the exam.

Integration along a path

If $\gamma: [a, b] \to \mathbb{C}$ is a smooth path, and f is a continuous function on the image of γ , then $\int_{\gamma} f(z) dz$ means $\int_{a}^{b} f(\gamma(t))\gamma'(t) dt$.

More generally, if the path γ is not smooth but has bounded variation, then $\int_{\gamma} f(z) dz$, or $\int_{\gamma} f$, or $\int_{a}^{b} (f \circ \gamma) d\gamma$ means the limit of *Riemann-Stieltjes sums*

$$\sum_{k=1}^n f(\gamma(\tau_k))(\gamma(t_k) - \gamma(t_{k-1})),$$

where the points t_0, \ldots, t_n form a partition of [a, b], and τ_k is an arbitrary point between t_{k-1} and t_k .

Remark: For most purposes, piecewise smooth paths suffice, for Lemma III.1.19 says that every rectifiable path can be arbitrarily well approximated by a polygonal path.

The mean-value property of analytic functions

Suppose f is analytic on a disk $\{ z \in \mathbb{C} : |z| < R \}$. Consider

$$rac{d}{dr} igg(rac{1}{2\pi} \int_0^{2\pi} f(r e^{i heta}) \, d heta igg), \qquad ext{where } 0 < r < R.$$

Assuming that f has a continuous derivative, apply Leibniz's rule for differentiating an integral [Proposition IV.2.1] to rewrite as

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{\partial f}{\partial r} \, d\theta, \qquad \text{or} \qquad -\frac{i}{2\pi r} \int_0^{2\pi} \frac{\partial f}{\partial \theta} \, d\theta$$

by the Cauchy-Riemann equations, hence 0.

Therefore $\frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) d\theta$ is a constant function of r, hence equal to the limit as $r \to 0$, which equals f(0).

Application 1: Cauchy's integral theorem on a disk

Apply the mean-value property to the function z f(z):

$$0 = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) re^{i\theta} d\theta = \frac{1}{2\pi i} \int_0^{2\pi} f(re^{i\theta}) \frac{\partial}{\partial \theta} (re^{i\theta}) d\theta.$$

Consider the circular path $\gamma_r \colon [0, 2\pi] \to \mathbb{C}, \ \gamma_r(\theta) = re^{i\theta}$.

The integrand above is $f(\gamma_r(\theta)) \gamma'_r(\theta) d\theta$.

So $\int_{\gamma_r} f(z) dz = 0$ for every function f that is analytic in a disk of radius larger than r.

Application 2: Special case of Cauchy's integral formula

Rewrite the mean-value property as a path integral over γ_r :

$$\begin{split} f(0) &= \frac{1}{2\pi} \int_0^{2\pi} f(r e^{i\theta}) \, d\theta \\ &= \frac{1}{2\pi i} \int_0^{2\pi} f(\gamma_r(\theta)) \frac{\gamma_r'(\theta)}{\gamma_r(\theta)} \, d\theta \\ &= \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(z)}{z} \, dz. \end{split}$$

An important Möbius transformation

Let D be the open unit disk, $\{z \in \mathbb{C} : |z| < 1\}$. When $a \in D$, let $\varphi_a(z)$ be $\frac{a-z}{1-\bar{a}z}$. Then φ_a is self-inverse, maps D bijectively to D, and maps ∂D bijectively to ∂D .

Proof.

A computation, the main step being

$$\left|rac{a-z}{1-ar{a}\,z}
ight|^2 = 1 - rac{(1-|a|^2)(1-|z|^2)}{|1-ar{a}\,z|^2}.$$

The self-inverse property follows because $\varphi_a \circ \varphi_a$ fixes the four points 0, *a*, $1/\bar{a}$, and ∞ . A non-identity Möbius transformation can fix at most two points in the extended complex numbers.

A tricky application of φ_a

Apply the special case of Cauchy's integral formula to the composite function $f \circ \varphi_a$ when r = 1:

$$f(a) = f \circ \varphi_a(0) = \frac{1}{2\pi i} \int_{|z|=1} \frac{f \circ \varphi_a(z)}{z} dz.$$

Trick 1: Reparametrize the path: $z = \varphi_a(w)$. Trick 2: Compute $\frac{dz}{z}$ locally as $d \log(z)$, or $d \log \varphi_a(w)$, or

$$\left(\frac{1}{w-a}+\frac{\bar{a}}{1-\bar{a}w}\right)\,dw.$$

Trick 3: $\int_{|w|=1} \frac{f(w)\bar{a}}{1-\bar{a}w} dw = 0$ by Cauchy's integral theorem.

Conclusion: Cauchy's integral formula on a disk

If f is analytic on a neighborhood of the closed unit disk, and a is an arbitrary point in the open unit disk, then

$$f(a) = \frac{1}{2\pi i} \int_{|w|=1} \frac{f(w)}{w-a} dw.$$

Assignment (not to hand in)

Make a list of the main concepts and theorems covered so far (in preparation for the exam coming up on Thursday, October 4).