Reminder

The first examination takes place in class on Thursday, October 4.
Please bring paper and a writing implement to the exam.

Integration along a path

If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a smooth path, and f is a continuous function on the image of γ, then $\int_{\gamma} f(z) d z$ means $\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t$.

More generally, if the path γ is not smooth but has bounded variation, then $\int_{\gamma} f(z) d z$, or $\int_{\gamma} f$, or $\int_{a}^{b}(f \circ \gamma) d \gamma$ means the limit of Riemann-Stieltjes sums

$$
\sum_{k=1}^{n} f\left(\gamma\left(\tau_{k}\right)\right)\left(\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right)
$$

where the points t_{0}, \ldots, t_{n} form a partition of $[a, b]$, and τ_{k} is an arbitrary point between t_{k-1} and t_{k}.

Remark: For most purposes, piecewise smooth paths suffice, for Lemma III.1.19 says that every rectifiable path can be arbitrarily well approximated by a polygonal path.

The mean-value property of analytic functions

Suppose f is analytic on a disk $\{z \in \mathbb{C}:|z|<R\}$. Consider

$$
\frac{d}{d r}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) d \theta\right), \quad \text { where } 0<r<R
$$

Assuming that f has a continuous derivative, apply Leibniz's rule for differentiating an integral [Proposition IV.2.1] to rewrite as

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\partial f}{\partial r} d \theta, \quad \text { or } \quad-\frac{i}{2 \pi r} \int_{0}^{2 \pi} \frac{\partial f}{\partial \theta} d \theta
$$

by the Cauchy-Riemann equations, hence 0 .
Therefore $\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) d \theta$ is a constant function of r, hence equal to the limit as $r \rightarrow 0$, which equals $f(0)$.

Application 1: Cauchy's integral theorem on a disk

Apply the mean-value property to the function $z f(z)$:

$$
0=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) r e^{i \theta} d \theta=\frac{1}{2 \pi i} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) \frac{\partial}{\partial \theta}\left(r e^{i \theta}\right) d \theta
$$

Consider the circular path $\gamma_{r}:[0,2 \pi] \rightarrow \mathbb{C}, \gamma_{r}(\theta)=r e^{i \theta}$.
The integrand above is $f\left(\gamma_{r}(\theta)\right) \gamma_{r}^{\prime}(\theta) d \theta$.
So $\int_{\gamma_{r}} f(z) d z=0$ for every function f that is analytic in a disk of radius larger than r.

Application 2: Special case of Cauchy's integral formula

Rewrite the mean-value property as a path integral over γ_{r} :

$$
\begin{aligned}
f(0) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) d \theta \\
& =\frac{1}{2 \pi i} \int_{0}^{2 \pi} f\left(\gamma_{r}(\theta)\right) \frac{\gamma_{r}^{\prime}(\theta)}{\gamma_{r}(\theta)} d \theta \\
& =\frac{1}{2 \pi i} \int_{\gamma_{r}} \frac{f(z)}{z} d z .
\end{aligned}
$$

An important Möbius transformation

Let D be the open unit disk, $\{z \in \mathbb{C}:|z|<1\}$. When $a \in D$, let $\varphi_{a}(z)$ be $\frac{a-z}{1-\bar{a} z}$. Then φ_{a} is self-inverse, maps D bijectively to D, and maps ∂D bijectively to ∂D.
Proof.
A computation, the main step being

$$
\left|\frac{a-z}{1-\bar{a} z}\right|^{2}=1-\frac{\left(1-|a|^{2}\right)\left(1-|z|^{2}\right)}{|1-\bar{a} z|^{2}} .
$$

The self-inverse property follows because $\varphi_{a} \circ \varphi_{a}$ fixes the four points $0, a, 1 / \bar{a}$, and ∞. A non-identity Möbius transformation can fix at most two points in the extended complex numbers.

A tricky application of φ_{a}

Apply the special case of Cauchy's integral formula to the composite function $f \circ \varphi_{a}$ when $r=1$:

$$
f(a)=f \circ \varphi_{a}(0)=\frac{1}{2 \pi i} \int_{|z|=1} \frac{f \circ \varphi_{a}(z)}{z} d z .
$$

Trick 1: Reparametrize the path: $z=\varphi_{a}(w)$.
Trick 2: Compute $\frac{d z}{z}$ locally as $d \log (z)$, or $d \log \varphi_{a}(w)$, or

$$
\left(\frac{1}{w-a}+\frac{\bar{a}}{1-\bar{a} w}\right) d w .
$$

Trick 3: $\int_{|w|=1} \frac{f(w) \bar{a}}{1-\bar{a} w} d w=0$ by Cauchy's integral theorem.

Conclusion: Cauchy's integral formula on a disk

If f is analytic on a neighborhood of the closed unit disk, and a is an arbitrary point in the open unit disk, then

$$
f(a)=\frac{1}{2 \pi i} \int_{|w|=1} \frac{f(w)}{w-a} d w .
$$

Assignment (not to hand in)

Make a list of the main concepts and theorems covered so far (in preparation for the exam coming up on Thursday, October 4).

