## Reminder

The first examination takes place in class on Thursday, October 4.
Please bring paper and a writing implement to the exam.

## Recap: Cauchy's integral formula on the unit disk

If $f$ is analytic on a neighborhood of the closed unit disk, then

$$
\frac{1}{2 \pi i} \int_{|w|=1} \frac{f(w)}{w-z} d w= \begin{cases}f(z) & \text { when }|z|<1 \\ 0 & \text { when }|z|>1\end{cases}
$$

## Remarks

1. The symbol $\int_{|w|=1}$ or $\oint_{|w|=1}$ is an abbreviation for $\int_{\gamma}$ where $\gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$.
2. When $|z|=1$, the integral may be divergent.
3. Radius 1 is merely a convenience. Making a dilation shows that a corresponding formula holds when $f$ is analytic on a disk of arbitrary radius.

## Some consequences of Cauchy's integral formula on a disk

- The values of an analytic function $f$ on the boundary determine the values of $f$ everywhere inside the disk.
- Applying Leibniz's rule to differentiate under the integral sign shows that

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{|w|=1} \frac{f(w)}{(w-z)^{n+1}} d w, \quad|z|<1, \quad n \in \mathbb{N} .
$$

Thus the existence of a continuous first-order complex derivative implies the existence of continuous complex derivatives of all orders!

## Proof of the fundamental theorem of algebra

Suppose, seeking a contradiction, that $P(z)$ is a nonconstant polynomial that is never equal to 0 . Then $1 / P(z)$ is entire.

Since $|P(z)| \rightarrow \infty$ when $|z| \rightarrow \infty$, there is a radius $R$ such that

$$
\frac{1}{|P(z)|}<\frac{1}{2|P(0)|} \quad \text { when }|z|=R \text {. }
$$

Apply Cauchy's integral formula to $1 / P(z)$ to see that

$$
\left|\frac{1}{P(0)}\right|=\left|\frac{1}{2 \pi i} \int_{|z|=R} \frac{1 / P(z)}{z-0} d z\right| \leq \frac{1}{2|P(0)|}
$$

contradiction.

## Liouville's theorem for entire functions

Theorem (3.4 on page 77)
The range of an entire function is either a single point or an unbounded set.

Proof (different from the one in the book).
If bounded, the range is contained in some disk $B(0 ; M)$. If $z$ is arbitrary, and $r$ is any radius larger than $|z|$, then

$$
\begin{aligned}
|f(z)-f(0)| & =\left|\frac{1}{2 \pi i} \int_{|w|=r} \frac{f(w)}{w-z}-\frac{f(w)}{w-0} d w\right| \\
& =\left|\frac{z}{2 \pi i} \int_{|w|=r} \frac{f(w)}{(w-z) w} d w\right| \leq \frac{|z| M}{r-|z|}
\end{aligned}
$$

Let $r \rightarrow \infty$ to see that $f(z) \equiv f(0)$.

