Exam follow-up

- Solutions are posted.
- Grading algorithm: $40+\sum_{k=1}^{6} n_{k}$, where $0 \leq n_{k} \leq 10$.
- Class statistics: mean $=87.5$, median $=89$, maximum $=99$.

Remark on Exam Problem 3

To prove the Cauchy-Riemann equations in polar coordinates requires a computation.

But to remember the equations requires only an example.
The identity function z is analytic, and $z=r e^{i \theta}$, so the relation between $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ must be that $r \frac{\partial f}{\partial r}=\frac{1}{i} \cdot \frac{\partial f}{\partial \theta}$.

Remark on Exam Problem 4

If $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, and $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers that converges, then $\lim _{n \rightarrow \infty} g\left(a_{n}\right)=g\left(\lim _{n \rightarrow \infty} a_{n}\right)$. [equivalent to the definition of continuity] $n \rightarrow \infty$ $n \rightarrow \infty$

Counterexample: $g(x)=\frac{1}{1+x^{2}}$, and $a_{n}= \begin{cases}1, & \text { if } n \text { is odd, } \\ 2, & \text { if } n \text { is even. }\end{cases}$

Remark on Exam Problem 6

The four angles really are right angles.

Recap: Cauchy's integral formula on the unit disk

If f is analytic on a neighborhood of the closed unit disk, then

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{|w|=1} \frac{f(w)}{w-z} d w & = \begin{cases}f(z) & \text { when }|z|<1, \\
0 & \text { when }|z|>1,\end{cases} \\
\frac{n!}{2 \pi i} \int_{|w|=1} \frac{f(w)}{(w-z)^{n+1}} d w & = \begin{cases}f^{(n)}(z) & \text { when }|z|<1, \\
0 & \text { when }|z|>1\end{cases}
\end{aligned}
$$

Corollary: Existence of power series expansions

Theorem (2.8 on page 72)
If f is analytic in a disk with center z_{0}, then f can be represented by a power series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ that converges (at least) in that disk. Moreover, $c_{n}=\frac{1}{n!} f^{(n)}\left(z_{0}\right)$.
Idea of the proof.
Use Cauchy's integral formula to write $f(z)$ as $\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w$,
where γ is a circle centered at z_{0}. Express $\frac{1}{w-z}$ as
$\frac{1}{w-z_{0}} \cdot \frac{1}{1-\frac{z-z_{0}}{w-z_{0}}}$, expand in a geometric series, and integrate the series term-by-term.

Example: Bernoulli numbers

Suppose $f(z)=\frac{z}{e^{z}-1}$ when $z \neq 0$, and 1 when $z=0$.
Then f is analytic in a neighborhood of 0 .
The Bernoulli number B_{n} is $f^{(n)}(0)$, so $f(z)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}$.
What is the radius of convergence of this power series?
Answer: 2π, the radius of the largest disk in which f is analytic.
It can be shown [Exercise IV.2.14 on page 76] that

$$
\tan (z)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{2 n}\left(2^{2 n}-1\right) B_{2 n}}{(2 n)!} z^{2 n-1}
$$

What is the radius of convergence of this power series?
Answer: $\pi / 2$.

Zeros of analytic functions

Theorem (Corollary 3.10 on page 79)
If f is a nonconstant analytic function on a connected open set, then the zeros of f are isolated.

Proof.
Suppose $f\left(z_{0}\right)=0$. Consider the Taylor series for f, say
$\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$.
If f is not identically zero, then there is a first nonzero coefficient,
say c_{k}. So $f(z)=\left(z-z_{0}\right)^{k} \sum_{n=0}^{\infty} c_{n+k}\left(z-z_{0}\right)^{n}$.
The first factor is nonzero when $z \neq z_{0}$. The second factor is nonzero when $z=z_{0}$, so by continuity, nonzero in a neighborhood of z_{0}. So the zeros of f cannot accumulate at z_{0}.

Assignment due next time

- Exercise 5 in section IV. 2 on page 74, which asks for the Taylor series in powers of $(z-i)$ for the principal branch of the logarithm, and the radius of convergence of the series.
- Exercise 8 in section IV. 3 on page 80, which says that the analytic functions on a region (connected open set) form an integral domain.

