Warm-up exercise on zeros of analytic functions

Suppose G is a connected open subset of \mathbb{C}, and $f: G \rightarrow \mathbb{C}$ is a nonconstant analytic function. Prove:
(a) If K is a compact subset of G, then the number of zeros of f in K is finite.
(b) The set of zeros of f in G is countable (can be put in one-to-one correspondence with a subset of \mathbb{N}).

Application of isolated zeros:
 Persistence of functional relations

You know that $e^{a+b}=e^{a} e^{b}$ when $a \in \mathbb{R}$ and $b \in \mathbb{R}$.
Why is $e^{z+w}=e^{z} e^{w}$ when $z \in \mathbb{C}$ and $w \in \mathbb{C}$?

Proof.

Suppose $f_{b}(z)=e^{z+b}-e^{z} e^{b}$ when $b \in \mathbb{R}$.
Then f_{b} is entire (analytic in the entire plane), and $f_{b}(a)=0$ when $a \in \mathbb{R}$. The zeros of f_{b} are not isolated, so f_{b} is identically zero.

Next suppose $g_{z}(w)=e^{z+w}-e^{z} e^{w}$ when $z \in \mathbb{C}$.
Then g_{z} is entire, and $g_{z}(b)=0$ when $b \in \mathbb{R}$. The zeros of g are not isolated, so g_{z} is identically zero.

Are the points inside or outside?

Figure A

Figure B

Assignment due next time

- Solve Exercise 10 in $\S 3$ of Chapter IV (page 80).
- Solve Problem 3 on the August 2008 qualifying examination.

