Suppose G is a connected open subset of \mathbb{C} , and $f: G \to \mathbb{C}$ is a nonconstant analytic function. Prove:

- (a) If K is a compact subset of G, then the number of zeros of f in K is finite.
- (b) The set of zeros of f in G is countable (can be put in one-to-one correspondence with a subset of \mathbb{N}).

Application of isolated zeros: Persistence of functional relations

You know that $e^{a+b} = e^a e^b$ when $a \in \mathbb{R}$ and $b \in \mathbb{R}$. Why is $e^{z+w} = e^z e^w$ when $z \in \mathbb{C}$ and $w \in \mathbb{C}$?

Proof. Suppose $f_b(z) = e^{z+b} - e^z e^b$ when $b \in \mathbb{R}$. Then f_b is entire (analytic in the entire plane), and $f_b(a) = 0$ when $a \in \mathbb{R}$. The zeros of f_b are not isolated, so f_b is identically zero.

Next suppose $g_z(w) = e^{z+w} - e^z e^w$ when $z \in \mathbb{C}$. Then g_z is entire, and $g_z(b) = 0$ when $b \in \mathbb{R}$. The zeros of g are not isolated, so g_z is identically zero. Are the points inside or outside?

Figure A

Figure B

Assignment due next time

- ► Solve Exercise 10 in §3 of Chapter IV (page 80).
- ► Solve Problem 3 on the August 2008 qualifying examination.