Jordan curve theorem

Theorem (Jordan, 1887)
If J is the homeomorphic image of a circle (a simple closed curve), then $\mathbb{C} \backslash J$ has precisely two connected components, one bounded and one unbounded.

Proof.
Beyond the scope of this course; usually proved in a course on algebraic topology as the low-dimensional case of the more general Jordan-Brouwer separation theorem.

Camille Jordan (1838-1922), French;
L. E. J. Brouwer (1881-1966), Dutch.

Winding number $n(\gamma ; b)$, or index $\operatorname{Ind}(\gamma, b)$

Theorem (Proposition 4.1 on page 81)
When γ is a closed rectifiable path, and b is a point not on the image of γ, the value of $\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-b} d z$ is an integer.
The intuitive proof (compare page 82).
Think of $\frac{1}{z-b} d z$ as $d \log (z-b)$. So $\int_{\gamma} \frac{1}{z-b} d z$ represents the change in $\log (z-b)$ along the path γ.

Although $\ln |z-b|+i \arg (z-b)$ may not be well defined globally, there are locally defined branches at each point of γ, and the change is independent of the choice of branch.

There is no net change in $\ln |z-b|$ around the closed path γ, so the integral equals i times the net change of $\arg (z-b)$ around γ, or i times $2 \pi n$ for some integer n.

The "homology form" of Cauchy's integral formula

Theorem (5.6 on page 85)
Suppose G is an open subset of \mathbb{C}, and $f: G \rightarrow \mathbb{C}$ is analytic, and γ is a closed rectifiable path in G such that for every point b in $\mathbb{C} \backslash G$, the winding number of γ about b equals 0 .
[The winding-number hypothesis is vacuous if G has no holes.] If $w \in G$, and w does not lie on the image of γ, then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-w} d z=f(w) n(\gamma ; w)
$$

More generally, $\sum_{j=1}^{k} \frac{1}{2 \pi i} \int_{\gamma_{j}} \frac{f(z)}{z-w} d z=\sum_{j=1}^{k} f(w) n\left(\gamma_{j} ; w\right)$ if
$\sum_{j=1}^{k} n\left(\gamma_{j} ; b\right)=0$ for every point b in $\mathbb{C} \backslash G$, and $w \in G$, and w does not lie on any of the closed rectifiable curves $\gamma_{1}, \ldots, \gamma_{k}$ in G.

A remark on Dixon's 1971 proof of Cauchy's formula

(to be continued)

Assignment due next time

(A) Read on page 73 about Cauchy's estimate for derivatives.

- Solve Exercise 1 on page 80.
(B) Solve Exercise 4 on page 83.

