A remark on Dixon's 1971 proof of Cauchy's formula

If $g(z, w):=\frac{f(z)-f(w)}{z-w}$ when $z \neq w$, and $g(w, w)=f^{\prime}(w)$,
why is $g: D \times D^{z} \rightarrow \mathbb{C}$ jointly continuous and analytic?
Away from "the diagonal" $\{(z, w) \in D \times D: z=w\}$, the function g equals an analytic function divided by a nonzero analytic function, so g is analytic.

What if z and w are close to the same value b, say $|z-b|<\varepsilon$ and $|w-b|<\varepsilon$? Cauchy's formula for a disk implies that

$$
\begin{aligned}
g(z, w) & =\frac{1}{z-w} \cdot \frac{1}{2 \pi i} \int_{|\zeta-b|=\varepsilon}\left(\frac{f(\zeta)}{\zeta-z}-\frac{f(\zeta)}{\zeta-w}\right) d \zeta \\
& =\frac{1}{2 \pi i} \int_{|\zeta-b|=\varepsilon} \frac{f(\zeta)}{(\zeta-z)(\zeta-w)} d \zeta,
\end{aligned}
$$

and the final integral is analytic in z and w by Leibniz's rule.

Example

$$
\int_{\gamma} \frac{e^{z}}{z} d z=?
$$

Solution: If $G=\mathbb{C} \backslash\{0\}$ and $f(z)=e^{z} / z$, then the homology version of Cauchy's theorem implies that

Therefore $\int_{\gamma} \frac{e^{z}}{z} d z=\int_{|z|=1} \frac{e^{z}}{z} d z=2 \pi i e^{0}=2 \pi i$.

A converse to Cauchy's theorem

Theorem (homology version of Cauchy's theorem)
If $f: G \rightarrow \mathbb{C}$ is analytic, then $\int_{\gamma} f(z) d z=0$ for every closed curve γ having winding number zero about points in $\mathbb{C} \backslash G$.

Theorem (Giacinto Morera, 1886)
If $f: G \rightarrow \mathbb{C}$ is a continuous function, and $\int_{\gamma} f(z) d z=0$ for every closed curve γ, then f is analytic.

Assignment due next time

1. Exercise 2 in $\S 4$ of Chapter IV, which asks for a closed rectifiable curve whose winding number about different points takes every integer value.
(Remember that by definition, the domain of a curve is supposed to be a closed and bounded interval in \mathbb{R}.)
2. Exercise 8 in $\S 5$ of Chapter IV: the limit of a uniformly convergent sequence of analytic functions is analytic. (For reminders about uniform convergence, see $\S 6$ of Chapter II. You may use the knowledge from real analysis that if $\left\{g_{n}\right\}$ is a sequence of continuous functions converging uniformly to a limit function g on a compact interval $[a, b]$, then g is continuous on $[a, b]$, and $\int_{a}^{b} g_{n}(t) d t$ converges to $\int_{a}^{b} g(t) d t$.)
