Counting zeros

Theorem (basic version of the "argument principle")
If G is a simply connected region, and γ is a simple closed rectifiable curve in G oriented counterclockwise, and $f: G \rightarrow \mathbb{C}$ is analytic, and f has no zeros on (the image of) γ, then

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z= & \text { number of zeros of } f \text { inside } \gamma \\
& \text { (counted according to multiplicity) } \\
= & \frac{1}{2 \pi} \text { net change in } \arg f(z) \text { around } \gamma .
\end{aligned}
$$

For generalizations, see Theorem 7.2 in Chapter IV and $\S 3$ of Chapter V.

Example

Problem 2 on the August 2018 qualifying exam asks, "How many zeros of the polynomial $z^{4}+3 z^{2}+z+1$ lie in the right half-plane?"
Solution
There are no zeros on either coordinate axis.
The polynomial has real coefficients, so the zeros occur in complex-conjugate pairs.

Apply the argument principle on a quarter circle in the first quadrant with large radius to see that there is one zero in the first quadrant.

Rouché's theorem about walking a dog

Theorem (Rouché, 1862)
If G is a simply connected region, and γ is a simple closed rectifiable curve in G oriented counterclockwise, and f and φ are analytic functions on G, and

$$
|\varphi(z)|<|f(z)| \quad \text { when } z \text { is on } \gamma,
$$

then f and $f \pm \varphi$ have the same number of zeros inside γ.
Example
Problem 10 on the January 2018 qualifying exam says that if $1<a$, then the function $e^{z}-z-a$ has exactly one zero in the half-plane where $\operatorname{Re}(z)<0$.
Solution: take $f(z)=z+a$ and $\varphi(z)=e^{z}$ and apply the theorem on a big semi-circle.

Assignment due next time

1. Solve Problem 9 on the August 2016 qualifying exam, which asks for the number of zeros of the function

$$
z^{8}+\exp (2016 \pi z)
$$

in the half-plane where $\operatorname{Re}(z)<0$.
2. Solve Problem 3 on the January 2017 qualifying exam, which says that the partial sums of the Maclaurin series of the exponential function are eventually zero-free on a fixed disk.

