Exam 2 follow-up

- Solutions are posted.
- Grading algorithm: $40+\sum_{k=1}^{6} n_{k}$, where $0 \leq n_{k} \leq 10$.
- Class statistics: mean $=85.5$, median $=88$, maximum $=100$.

Classification of isolated singularities

If f is analytic on a punctured disk $\{z \in \mathbb{C}: 0<|z-b|<r\}$, then either

1. $|f|$ is bounded near b, in which case f has a removable singularity (f extends to be analytic in the whole disk); or
2. $\lim _{z \rightarrow b}|f(z)|=\infty$, in which case f has a pole; or
3. neither of the above: there is some sequence tending to b along which $|f| \rightarrow \infty$ and some other sequence along which $|f|$ remains bounded; f has an essential singularity.

Examples (when $b=0$)

1. $\frac{\sin (z)}{z}$
2. $\frac{1}{z^{2}}$
3. $e^{1 / z}$

Riemann's theorem on removable singularities

Hypothesis: f is analytic and bounded near an isolated singularity.
Conclusion: The singularity is removable.
Proof (different from the proof in the book, V.1.2).
WLOG, suppose f is analytic and bounded when $0<|z| \leq 1$. If

$$
g(z):=\frac{1}{2 \pi i} \int_{|w|=1} \frac{f(w)}{w-z} d w
$$

then $g(z)$ is analytic when $|z|<1$. By the homology form of Cauchy's integral formula,

$$
f(z)=\frac{1}{2 \pi i}\left(\int_{|w|=1}-\int_{|w|=\varepsilon}\right) \frac{f(w)}{w-z} d w \quad \text { when } \varepsilon<|z|<1
$$

Holding z fixed, let $\varepsilon \rightarrow 0$ to see that $f(z)=g(z)$ when $z \neq 0 . \quad \square$

The order of a pole

If $\lim _{z \rightarrow b}|f(z)|=\infty$, then $\lim _{z \rightarrow b} \frac{1}{f(z)}=0$.
So if f has a pole at b, then $\frac{1}{f}$ has a removable singularity at b.
If $\frac{1}{f}$ has a zero of order m at b, then f has a pole of order m.
Equivalently, m is the (smallest) positive integer such that $\lim _{z \rightarrow b}(z-b)^{m} f(z)$ exists and is nonzero.

The range of f near an essential singularity

Theorem (Picard's great theorem)
If f has an essential singularity at b, then for every (small) positive δ, the restriction of f to $\{z \in \mathbb{C}: 0<|z-b|<\delta\}$ has range equal to either \mathbb{C} or $\mathbb{C} \backslash\{$ one point $\}$.

Therefore a function takes every complex value-with one possible exception-infinitely often in every punctured neighborhood of an essential singularity.
Examples

- $z^{2} e^{1 /(z-b)}$ has an essential singularity at b and exceptional value 0 .
- $\sin (1 / z)$ has an essential singularity at 0 and no exceptional value.

Assignment due next time

- Exercise 6 in Section 1 of Chapter V.
- Exercise 13(a) in Section 1 of Chapter V.

