
Math 617 Theory of Functions of a Complex Variable
Examination 1

Fall 2015

1. State some theorem (from this course) to which the name of Augustin-Louis
Cauchy is attached.

Solution. Some results covered so far are Cauchy’s integral theorem for
rectangles, Cauchy’s residue theorem for rectangles, and Cauchy’s formula
for the radius of convergence of a power series. (There are others.)

2. Give a geometric description of the set of points z in ℂ for which

z2 + 4zz + ( z )2 = 6.

Solution. The equation is quadratic, so the set must be some conic section.
To identify the set more precisely, you could set z equal to x+ iy and rewrite
the left-hand side in terms of the real coordinates x and y:

z2 + 4zz + ( z )2 = 2Re(z2) + 4|z|2

= 2(x2 − y2) + 4(x2 + y2)
= 6x2 + 2y2.

Accordingly, the original equation says that x2 + 1
3
y2 = 1. This equation

represents an ellipse centered at the origin. (The foci are ±
√

2 i.)

3. The complex function tan(z) is defined to be the quotient sin(z)
cos(z)

. Show that
there is no complex number z for which tan(z) is equal to i.

Solution. Seeking a contradiction, suppose that there is a complex number z
for which tan(z) = i, or, equivalently, sin(z) = i cos(z). Multiplying by −i
shows that−i sin(z) = cos(z), or 0 = cos(z)+i sin(z) = eiz. But the complex
exponential function is never equal to 0: if z = x + iy, then |eiz| = e−y > 0.
The contradiction shows that tan(z) is never equal to i.
An alternative method is to start from the supposition that sin(z) = i cos(z)
and square both sides to deduce that sin2(z) = − cos2(z), whence sin2(z) +
cos2(z) = 0. But sin2(z) + cos2(z) = 1 for every complex number z by the
persistence of functional relationships, since sin2(x)+cos2(x) = 1when x is
a real number. The contradiction again shows that the point i cannot be in
the range of the complex tangent function.
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Remark. Since the tangent function is odd (antisymmetric), the tangent
function cannot take the value −i either. The two values ±i turn out to be
the only values omitted by the complex tangent function. You can verify
this claim by an explicit calculation; alternatively, the claim can be deduced
from a deep theorem of Picard, to be proved inMath 618, concerning omitted
values of meromorphic functions.

4. Suppose the power series
∑∞

n=1 anz
n has radius of convergence equal to 6,

and the power series
∑∞

n=1 bnz
n has radius of convergence equal to 7. What,

if anything, can be said about the radius of convergence of the power series
∑∞

n=1 anbnz
n?

Solution. The hypothesis implies that lim supn→∞ |an|1∕n = 1∕6, and simi-
larly lim supn→∞ |bn|1∕n = 1∕7. The lemma stated and proved below implies
that lim supn→∞ |anbn|1∕n ≤ 1∕42. Therefore the radius of convergence of
the power series

∑∞
n=1 anbnz

n is at least 42 but could be larger.
Indeed, if r is an arbitrary number greater than or equal to 42, then there
is an example in which the radius of convergence of

∑∞
n=1 anbnz

n is equal
to r. Namely, set an equal to 1∕6n when n is a power of 2 and 0 otherwise;
set bn equal to (6∕r)n when n is a power of 2 and 1∕7n when n is a power
of 3 and 0 otherwise. Evidently, lim supn→∞ |an|1∕n = 1∕6; and 6∕r ≤ 1∕7
when r ≥ 42, so lim supn→∞ |bn|1∕n = 1∕7. The value of anbn equals 1∕rn
when n is a power of 2 and 0 otherwise, so lim supn→∞ |anbn|1∕n = 1∕r, as
desired. The special case when r = ∞ can be handled by the same argument
by interpreting 6∕r as 0 in that case.
Lemma. Suppose for every natural number n that An ≥ 0 and Bn ≥ 0. Let
� denote lim supn→∞An, and let � denote lim supn→∞Bn. If � and � are finite
(not +∞), then

lim sup
n→∞

AnBn ≤ ��.

Remark. The reason for excluding an infinite lim sup is that if � = ∞ and
� = 0, then the right-hand side of the inequality is the undefined expression
∞ ⋅ 0.
Proof. Fix an arbitrary positive number ". The definitions of � and � imply
the existence of a numberN such that An ≤ �+ " and Bn ≤ � + " whenever
n ≥ N . The indicated quantities are nonnegative, so AnBn ≤ (� + ")(� + ")
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when n ≥ N . Therefore

lim sup
n→∞

AnBn ≤ (� + ")(� + ").

Now let " tend to 0.

5. Suppose f is an analytic function (on some open subset of ℂ) with real
part u and imaginary part v. Show that ∇u and ∇v are orthogonal vectors.

The notation ∇u means
(

)u
)x
, )u
)y

)

, the gradient vector of u.

Solution. The dot product (scalar product) of the two gradients equals

)u
)x
)v
)x

+ )u
)y
)v
)y
.

By the Cauchy–Riemann equations, this expression equals

)v
)y
)v
)x

− )v
)x
)v
)y
, or 0.

Accordingly, the two vectors are orthogonal.
Remark. The geometric interpretation is that the level sets of u (the curves
where u has a constant value) and the level sets of v are families of mutually
perpendicular curves (which youmight have called “orthogonal trajectories”
in calculus class).

6. Show that

∫

∞

−∞

x2

(x2 + 1)(x2 + 4)
dx = �

3
.

Solution. The integrand is a rational function with the degree of the de-
nominator two greater than the degree of the numerator. By the corollary
of Cauchy’s residue theorem for rectangles discussed in class, the value of
the integral is 2�i times the sum of the residues of the rational function

z2

(z2 + 1)(z2 + 4)
at the two singularities in the upper half-plane: namely, the

point where z = i and the point where z = 2i.
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Since
z2

(z2 + 1)(z2 + 4)
=

z2

(z+i)(z2+4)

z − i
,

the residue at the point where z = i is equal to

z2

(z + i)(z2 + 4)
|

|

|

|z=i
, or −1

6i
.

Similarly, the residue at the point where z = 2i is equal to

z2

(z2 + 1)(z + 2i)
|

|

|

|z=2i
, or −4

−12i
.

The sum of these residues equals 1∕(6i), so the value of the integral equals
2�i∕(6i), or �∕3.
Remark. This integral can be computed instead by techniques of real cal-
culus using the method of partial fractions: namely,

x2

(x2 + 1)(x2 + 4)
=

−1∕3
x2 + 1

+
4∕3
x2 + 4

.

The two fractions on the right-hand side have elementary antiderivatives
in terms of the real arctangent function. Cauchy’s residue calculus can be
viewed in this instance as a shortcut that eliminates some of the algebra
involved in computing the partial-fractions decomposition.

Bonus
Who is the French mathematician shown in the picture below?

(1789–1857)
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Solution. This mathematician is Augustin-Louis Cauchy, the person who created
most of the mathematics under discussion in this course.
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