Examination 2

Instructions: Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. Give an example of a closed curve γ such that the integrals $\int_{\gamma} \frac{8}{z-11} d z$ and $\int_{\gamma} \frac{11}{z-8} d z$
are well defined, equal, and nonzero.

Solution. Equality of the integrals implies that $8 n(\gamma ; 11)=11 n(\gamma ; 8)$. The simplest way to make this equality hold (with both sides nonzero) is to choose γ to have winding number 11 about the point 11 and winding number 8 around the point 8 . There are many ways to write down such a curve γ. Here is one:

$$
\gamma(t)= \begin{cases}10+3 e^{32 \pi i t}, & \text { when } 0 \leq t \leq 1 / 2 \\ 11+2 e^{12 \pi i\left(t-\frac{1}{2}\right)}, & \text { when } 1 / 2 \leq t \leq 1\end{cases}
$$

This formula describes a curve that first goes 8 times around a circle with center 10 and radius 3 (both of the points 8 and 11 are inside this circle) and then goes 3 times around a circle with center 11 and radius 2 (only the point 11 is inside this circle).
2. Suppose G is a simply connected open set, and f is an analytic function on G without zeros. You know a theorem stating that there exists a logarithm of f, that is, an analytic function g such that $e^{g(z)}=f(z)$ when $z \in G$.
(a) If f is injective, must g be injective?
(b) If g is injective, must f be injective?

Explain your reasoning.

Solution.

(a) Yes. If z_{1} and z_{2} are points for which $g\left(z_{1}\right)=g\left(z_{2}\right)$, then $e^{g\left(z_{1}\right)}=e^{g\left(z_{2}\right)}$, so $f\left(z_{1}\right)=$ $f\left(z_{2}\right)$, and injectivity of f implies that $z_{1}=z_{2}$. Thus injectivity of f implies injectivity of g.
(b) No. You saw a counterexample in class. If G is the plane with a cut along the nonpositive real axis, and $f(z)=z^{2}$, then $g(z)$ can be taken to be $2 \log (z)$, where $\log (z)$ denotes the principal branch of the logarithm. Indeed, $e^{2 \log (z)}=\left(e^{\log (z)}\right)^{2}=z^{2}$. The function $2 \log (z)$ is injective on G, but the function z^{2} is not.

For an even simpler counterexample, take G to be \mathbb{C} and $f(z)$ to be e^{z} and $g(z)$ to be z. Then g is injective, but f is not injective: indeed, the exponential function is periodic with period $2 \pi i$.
3. How many zeros does the function $z^{2018}+11 z^{8}+e^{z}$ have in the annulus where $1<|z|<2$? Explain how you know.
(As usual, zeros are to be counted according to multiplicity.)

Examination 2

Solution. The strategy is to determine the number of zeros inside the disk of radius 2 and then subtract the number of zeros inside the disk of radius 1 .
When $|z|=2$, the power $|z|^{2018}$ is astronomically large, and $\left|11 z^{8}+e^{z}\right|<3000$. Therefore the function is a small perturbation of z^{2018}, so Rouché's theorem implies that the number of zeros of the function in the disk of radius 2 matches the number of zeros of z^{2018}, namely, 2018.

When $|z|=1$, the term $11 z^{8}$ has absolute value equal to 11 , and $\left|z^{2018}+e^{z}\right|<4$. The function is a small perturbation of $11 z^{8}$, so Rouché's theorem implies that there are 8 zeros inside the disk of radius 1 .
Subtracting shows that the function has 2010 zeros in the annulus.
4. In some disk with center $11+8 i$, the function $\frac{1}{\cos (z)}$ can be represented by a Taylor series $\sum_{n=0}^{\infty} c_{n}(z-11-8 i)^{n}$. You know a theorem guaranteeing the existence of a radius R such that this series converges when $|z-11-8 i|<R$ and diverges when $|z-11-8 i|>R$. Determine the greatest integer less than or equal to R.

Solution. The exact value of R is the radius of the largest disk centered at $11+8 i$ in which the function is analytic. The function fails to be analytic at the zeros of the cosine function, which lie on the real axis at odd integer multiples of $\pi / 2$. Therefore R is the distance from $11+8 i$ to the closest odd integer multiple of $\pi / 2$.
Observe that 11 is a close approximation to $7 \pi / 2$, because $22 / 7$ is a close approximation to π. The radius R is exactly equal to $\sqrt{(11-7 \pi / 2)^{2}+8^{2}}$, and the greatest integer less than or equal to R is 8 .
5. Prove there is no analytic function f on the disk $\{z \in \mathbb{C}:|z|<2018\}$ such that

$$
f(1 / n)= \begin{cases}1 / n^{8}, & \text { when } n \text { is an even natural number } \\ 1 / n^{11}, & \text { when } n \text { is an odd natural number }\end{cases}
$$

Solution. Argue by contradiction. Suppose there were such a function f. By continuity, $f(0)=0$.
Method 1. The function $f(z)-z^{8}$ has zeros at the reciprocals of the even natural numbers, which accumulate at the origin. Since the zeros of the analytic function $f(z)-z^{8}$ are not isolated, this function is identically zero: $f(z) \equiv z^{8}$. By the same reasoning, the second clause of the definition of f implies that $f(z) \equiv z^{11}$. Contradiction.
Method 2. The function has a power series expansion $\sum_{n=0}^{\infty} c_{n} z^{n}$. But $c_{0}=0$, because $f(0)=0$. The definition of f shows that there is a sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ tending to 0 (namely,

Examination 2

the reciprocals of even natural numbers) such that $\lim _{n \rightarrow \infty} \frac{f\left(z_{n}\right)}{z_{n}}=0$. Therefore $c_{1}=0$. Similarly, $0=c_{2}=\cdots=c_{7}$, and $c_{8}=1$. But now taking the sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ to be the reciprocals of the odd natural numbers shows that $c_{8}=0$. Contradiction.
6. (a) A student makes an error by claiming that if f is an analytic function on a connected open set G, then $\int_{\gamma} f(z) d z=0$ for every simple closed smooth curve γ in G. Show that the claim is false by giving a counterexample. (You get to choose G and f and γ.)
(b) The student makes more error by claiming that if g is a continuous function on a connected open set G, and if there exists a simple closed smooth curve γ in G for which $\int_{\gamma} g(z) d z=0$, then g is analytic on G. Show that this claim is false too by giving a counterexample.

Solution.

(a) If G is additionally simply connected, then the claim is a correct version of Cauchy's theorem. So to create a counterexample, you need a region G that has a hole and a curve γ that has nonzero winding number about the hole.
For example, take G to be $\mathbb{C} \backslash\{0\}$ and γ to be the unit circle and $f(z)$ to be $1 / z$. Then f is analytic in G, and $\int_{\gamma} f(z) d z=2 \pi i \neq 0$.
(b) Morera's theorem says that g will be analytic if $\int_{\gamma} g(z) d z=0$ for every closed curve γ (or for sufficiently many closed curves). The goal of the problem is to exhibit a nonanalytic function whose integral around some simple closed curve equals 0 .
The natural first try for $g(z)$ is the non-analytic function \bar{z}, but this attempt fails. Indeed, Green's theorem (from two-dimensional real calculus) implies that $\int_{\gamma} \bar{z} d z$ equals $2 i$
times the area of the region inside γ, which cannot be zero.
Here are some examples that do work.

- The function $|z|$ is nowhere analytic on \mathbb{C}. Take the curve γ to be the unit circle. On γ, the function $|z|$ matches the constant function 1 (which is analytic!), so $\int_{\gamma}|z| d z=\int_{\gamma} 1 d z=0$.
- Being real-valued, the function $(\operatorname{Re} z)^{2}$ is nowhere analytic. Again take γ to be the unit circle. Symmetry (or explicit calculation) shows that $\int_{\gamma}(\operatorname{Re} z)^{2} d z=0$.

Examination 2

- If $G=\mathbb{C} \backslash\{0\}$, then the function $1 / \bar{z}$ is continuous on G and nowhere analytic. Again take γ to be the unit circle. Since $z \bar{z}=1$ on γ, and z is analytic, $\int_{\gamma} 1 / \bar{z} d z=$ $\int_{\gamma} z d z=0$.
- The preceding examples are nowhere analytic functions. You could alternatively satisfy the demands of the problem by specifying a function that is analytic on part but not all of the region. For instance, suppose $G=\mathbb{C}$, and

$$
g(z)= \begin{cases}0, & \text { when } \operatorname{Re}(z)<0 \\ \operatorname{Re}(z), & \text { when } \operatorname{Re}(z) \geq 0\end{cases}
$$

Then g is continuous on G, and g is analytic when $\operatorname{Re}(z)<0$ but not when $\operatorname{Re}(z)>$ 0. If γ is any closed curve contained in the left-hand half-plane, then $\int_{\gamma} g(z) d z=$ $\int_{\gamma} 0 d z=0$.

