The zeta function

The goal of this exercise is to understand the definition of the zeta function.
You have likely seen formulas like $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}$. What happens if the power of n is replaced by some other number? The result is Riemann's zeta function:

$$
\begin{equation*}
\zeta(z):=\sum_{n=1}^{\infty} \frac{1}{n^{z}}, \quad \operatorname{Re} z>1 . \tag{1}
\end{equation*}
$$

1. Since the complex power $a^{b}:=e^{b \log a}$ is "multi-valued", is the definition of $\zeta(z)$ ambiguous?
2. Why does the definition (1) produce a holomorphic function?

It turns out that the ζ function can be continued analytically to $\mathbb{C} \backslash\{1\}$, with a simple pole at 1 . Our goal is to prove a little less.
3. Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{z}}=\left(2^{1-z}-1\right) \zeta(z)$ when $\operatorname{Re} z>1$ by grouping the terms in the absolutely convergent sum on the left-hand side according to the parity of n.
4. Assuming that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{z}}$ represents a holomorphic function when $\operatorname{Re} z>0$, deduce that ζ is a meromorphic function when $\operatorname{Re} z>0$ and that ζ has a simple pole at 1 with residue 1 .
5. A generalization of the alternating series test states that sufficient conditions for convergence of a series $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ are that the sequence $\left\{b_{n}\right\}$ has bounded variation, meaning $\sum_{n=1}^{\infty}\left|b_{n+1}-b_{n}\right|<\infty$, and that $b_{n} \rightarrow 0$. (An analogous statement holds for uniform convergence.) To complete the preceding argument, deduce from this convergence test that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{z}}$ does represent a holomorphic function when $\operatorname{Re} z>0$.

