Exercise on the definition of order

The goal of this exercise is to demonstrate that you understand the definition of the order of an entire function.

Let $M(r)$ denote the maximum of the modulus of an entire function f on the disk of radius r centered at the origin; that is, $M(r):=\max _{|z| \leq r}|f(z)|$. The growth rate of $M(r)$ as $r \rightarrow \infty$ tells a lot about the function f. For example, if $\lim _{r \rightarrow \infty} \frac{M(r)}{r^{k}}=0$, then f must be a polynomial of degree less than k (by a generalization of Liouville's theorem: Theorem 3.4.4, page 89).

The word order is used to describe the exponential growth rate of an entire function. Here are four examples: the order of the exponential function e^{z} is 1 ; the order of $e^{z^{2}}$ is 2 ; the order of a polynomial is 0 ; the order of $z^{3} e^{z}$ is 1 . Usually one denotes order by the letter λ. A precise definition is

$$
\lambda:=\limsup _{r \rightarrow \infty} \frac{\log \log M(r)}{\log r} .
$$

1. Verify that the formal definition gives the right value for the four examples.
2. Verify that the order λ is the smallest real number satisfying the following property: for every positive ϵ, there exists a positive R such that $M(r) \leq e^{r^{\lambda+\epsilon}}$ when $r \geq R$.
3. Verify that the order λ is the smallest real number satisfying the following property: for every positive ϵ, there exists a positive C such that $M(r) \leq C e^{r^{\lambda+\epsilon}}$ for all r.
4. What can you say about the order of

- the sum of two entire functions?
- the product of two entire functions?

