Variations on the theorem of Weierstrass and Mittag-Leffler

This exercise aims to unify the Weierstrass and Mittag-Leffler theorems.

1. Deduce from the Weierstrass theorem the following weak unified statement. If U is an open set in the complex plane, $\left\{a_{n}\right\}$ is a discrete set in U, and $\left\{k_{n}\right\}$ is a sequence of integers, then there exists a meromorphic function in U with no zeroes or poles outside of $\left\{a_{n}\right\}$ and such that for each n, the Laurent series of the function at a_{n} starts with the power $\left(z-a_{n}\right)^{k_{n}}$.

Stimulated by Weierstrass's lectures in 1875, Mittag-Leffler worked out an improved theorem and eventually published it in the international journal that he founded. ${ }^{1}$ Suppose given two sequences of polynomials, $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$. Then there exists a meromorphic function f on U with no zeroes or poles outside of $\left\{a_{n}\right\}$ and such that for each n, the Laurent series of f at a_{n} is $p_{n}\left(1 /\left(z-a_{n}\right)\right)+q_{n}\left(z-a_{n}\right)$ plus higher-order terms. The proof can be executed in two steps, as follows.
2. Use the Weierstrass theorem to find a holomorphic function g having for each n a zero at a_{n} of order $1+\operatorname{deg} q_{n}$. Then use the version of Mittag-Leffler's theorem that you already know to find a meromorphic function h having for each n the same principal part at a_{n} as the quotient $\left[p_{n}\left(1 /\left(z-a_{n}\right)\right)+q_{n}\left(z-a_{n}\right)\right] / g(z)$. Show that the product $f_{1}:=g h$ has for each n a Laurent series at a_{n} of the desired form. (This argument is a short proof of Theorem 8.3.8 in the textbook.)

The function f_{1} just determined is almost the required f. The second step in the proof is to remove extraneous zeroes from f_{1}.
3. By part 1 , there is a meromorphic function f_{2} having zeroes and poles of the same orders as f_{1} at the $\left\{a_{n}\right\}$ and having no other zeroes or poles. (The Laurent series coefficients of f_{2} are not under control, however.) Locally near each point a_{n}, one can define a holomorphic branch of $\log \left(f_{1} / f_{2}\right)$, and by part 2 there is a holomorphic function φ on U that agrees to suitably high order at each a_{n} with $\log \left(f_{1} / f_{2}\right)$. Set $f:=f_{2} e^{\varphi}$.

[^0]
[^0]: ${ }^{1}$ G. Mittag-Leffler, "Sur la représentation analytique des fonctions monogènes uniformes d'une variable indépendante," Acta Math. 4 (1884), 1-79.

